Unsteady mixed convective boundary layer flow of viscous incompressible fluid along isothermal horizontal plate is analyzed through Similarity Solutions. The governing partial differential equations are transformed in...Unsteady mixed convective boundary layer flow of viscous incompressible fluid along isothermal horizontal plate is analyzed through Similarity Solutions. The governing partial differential equations are transformed into ordinary differential equations using the similarity transformation and solved numerically along with shooting technique. The flow field for the fluid velocity, temperature and concentration at the plate surface are significantly influenced by the governing parameters such as unsteadiness parameter, permeability parameter, Prandtl number, Schmidt number and the other driving parameters. The results show that both fluid velocity and temperature decrease but no significant effect on concentration for the increasing values of Prandtl number. It is also exposed that velocity and concentration is higher at lower Schmidt number for low Prandtl fluid. Finally, the dependency of the Skin-friction co-efficient, Nusselt number and Sherwood number, which are of physical interest, are also illustrated in tabular form for the governing parameters.展开更多
Similarity solution of unsteady convective boundary layer flow along isothermal vertical plate with porous medium is analyzed. The plate surface is reactive with the fluid and generates inert specie which diffuses ins...Similarity solution of unsteady convective boundary layer flow along isothermal vertical plate with porous medium is analyzed. The plate surface is reactive with the fluid and generates inert specie which diffuses inside the boundary. The flux of the specie at the plate is proportional to specie concentration at the plate. The governing equations of continuity, momentum, energy and specie diffusion are transformed into ordinary differential equation by using the similarity transformation and solved numerically by using free parameter method along with shooting technique. The dimensionless velocity, temperature and concentration profiles are obtained and presented through figures for different parameters entering into the problem. The local Skin-friction co-efficient, Nusselt number and Sherwood number at the plate for physical interest are also discussed through tables.展开更多
文摘Unsteady mixed convective boundary layer flow of viscous incompressible fluid along isothermal horizontal plate is analyzed through Similarity Solutions. The governing partial differential equations are transformed into ordinary differential equations using the similarity transformation and solved numerically along with shooting technique. The flow field for the fluid velocity, temperature and concentration at the plate surface are significantly influenced by the governing parameters such as unsteadiness parameter, permeability parameter, Prandtl number, Schmidt number and the other driving parameters. The results show that both fluid velocity and temperature decrease but no significant effect on concentration for the increasing values of Prandtl number. It is also exposed that velocity and concentration is higher at lower Schmidt number for low Prandtl fluid. Finally, the dependency of the Skin-friction co-efficient, Nusselt number and Sherwood number, which are of physical interest, are also illustrated in tabular form for the governing parameters.
文摘Similarity solution of unsteady convective boundary layer flow along isothermal vertical plate with porous medium is analyzed. The plate surface is reactive with the fluid and generates inert specie which diffuses inside the boundary. The flux of the specie at the plate is proportional to specie concentration at the plate. The governing equations of continuity, momentum, energy and specie diffusion are transformed into ordinary differential equation by using the similarity transformation and solved numerically by using free parameter method along with shooting technique. The dimensionless velocity, temperature and concentration profiles are obtained and presented through figures for different parameters entering into the problem. The local Skin-friction co-efficient, Nusselt number and Sherwood number at the plate for physical interest are also discussed through tables.