Landing gears of commercial aircraft make an important contribution to total aircraft noise in the approach configuration. Using fairings to shield components from high speed impingement reduces noise. Furthermore, pe...Landing gears of commercial aircraft make an important contribution to total aircraft noise in the approach configuration. Using fairings to shield components from high speed impingement reduces noise. Furthermore, perforating these fairings has been confirmed by flight tests to further enable noise reduction. Following an earlier fundamental study of the application of perforated fairings, a study has been performed to investigate and optimize the benefits of bleeding air through landing gear fairings. By means of wind tunnel tests, an aerodynamic and acoustic survey has been performed on a simplified generic main landing gear to explore the influence of (perforated) fairings on the lower part of the gear. The results show that for this specific case, the application of impermeable fairings reduces noise in the mid- and high frequency range by shielding sharp edged components from high velocity impingement. However, below 1 kHz the noise is shown to increase significantly. Application of the perforations is shown to diminish this low frequency increase whilst maintaining the reduction in the mid- and high frequency range. The aerodynamic and acoustic measurements point in the direction of the separated flow of the fairings interacting with the downstream gear components responsible for the low frequency noise increase. Bleeding of the air through the fairings reduces the large scale turbulence in the proximity of these components and hence diminishes the low frequency noise increase.展开更多
文摘Landing gears of commercial aircraft make an important contribution to total aircraft noise in the approach configuration. Using fairings to shield components from high speed impingement reduces noise. Furthermore, perforating these fairings has been confirmed by flight tests to further enable noise reduction. Following an earlier fundamental study of the application of perforated fairings, a study has been performed to investigate and optimize the benefits of bleeding air through landing gear fairings. By means of wind tunnel tests, an aerodynamic and acoustic survey has been performed on a simplified generic main landing gear to explore the influence of (perforated) fairings on the lower part of the gear. The results show that for this specific case, the application of impermeable fairings reduces noise in the mid- and high frequency range by shielding sharp edged components from high velocity impingement. However, below 1 kHz the noise is shown to increase significantly. Application of the perforations is shown to diminish this low frequency increase whilst maintaining the reduction in the mid- and high frequency range. The aerodynamic and acoustic measurements point in the direction of the separated flow of the fairings interacting with the downstream gear components responsible for the low frequency noise increase. Bleeding of the air through the fairings reduces the large scale turbulence in the proximity of these components and hence diminishes the low frequency noise increase.