Fabrication of phytogenic metal nanoparticles is a developing area of nanobiotechnology which has economic and potentially eco-friendly advantages over conventional chemical and physical synthesis methods. We report t...Fabrication of phytogenic metal nanoparticles is a developing area of nanobiotechnology which has economic and potentially eco-friendly advantages over conventional chemical and physical synthesis methods. We report the synthesis of anisotropic gold nanostructures using a phytoextract from the leaves of the pin oak tree, Quercus palustris. We used 2.5%, 5%, and 10% m/v extract concentrations to determine the importance of pin oak phytoextract concentration on the properties of the nanomaterials synthesized. Characterization of the resulting nanomaterials revealed that the concentration of the phytoextract is a key factor controlling the size and relative frequency of shapes the gold nanostructures formed. TEM micrographs demonstrate that triangular, spherical, and polyhedral gold nanostructures were formed in all treatments, although UV-Vis spectra indicated that the formation of fewer nanostructures in the 2.5% m/v phytoextract treatment We found that anisotropic nanostructures are formed at the highest concentrations in the preparation using 10% m/v phytoextract. UV-Vis, TEM, and DLS data indicate that the 5% m/v phytoextract results in the synthesis of the smallest sized nanoparticles.展开更多
文摘Fabrication of phytogenic metal nanoparticles is a developing area of nanobiotechnology which has economic and potentially eco-friendly advantages over conventional chemical and physical synthesis methods. We report the synthesis of anisotropic gold nanostructures using a phytoextract from the leaves of the pin oak tree, Quercus palustris. We used 2.5%, 5%, and 10% m/v extract concentrations to determine the importance of pin oak phytoextract concentration on the properties of the nanomaterials synthesized. Characterization of the resulting nanomaterials revealed that the concentration of the phytoextract is a key factor controlling the size and relative frequency of shapes the gold nanostructures formed. TEM micrographs demonstrate that triangular, spherical, and polyhedral gold nanostructures were formed in all treatments, although UV-Vis spectra indicated that the formation of fewer nanostructures in the 2.5% m/v phytoextract treatment We found that anisotropic nanostructures are formed at the highest concentrations in the preparation using 10% m/v phytoextract. UV-Vis, TEM, and DLS data indicate that the 5% m/v phytoextract results in the synthesis of the smallest sized nanoparticles.