A multichannel calorimeter system is designed and constructed which is capable of delivering single-shot and broadband spectral measurement of terahertz(THz) radiation generated in intense laser–plasma interactions. ...A multichannel calorimeter system is designed and constructed which is capable of delivering single-shot and broadband spectral measurement of terahertz(THz) radiation generated in intense laser–plasma interactions. The generation mechanism of backward THz radiation(BTR) is studied by using the multichannel calorimeter system in an intense picosecond laser–solid interaction experiment. The dependence of the BTR energy and spectrum on laser energy, target thickness and pre-plasma scale length is obtained. These results indicate that coherent transition radiation is responsible for the low-frequency component(<1 THz) of BTR. It is also observed that a large-scale pre-plasma primarily enhances the high-frequency component(>3 THz) of BTR.展开更多
X-ray absorption spectroscopy is proposed as a method for studying the heating of solid-density matter excited by secondary X-ray radiation from a relativistic laser-produced plasma. The method was developed and appli...X-ray absorption spectroscopy is proposed as a method for studying the heating of solid-density matter excited by secondary X-ray radiation from a relativistic laser-produced plasma. The method was developed and applied to experiments involving thin silicon foils irradiated by 0.5–1.5 ps duration ultrahigh contrast laser pulses at intensities between 0.5 × 10^(20) and 2.5 × 10^(20) W∕cm^2. The electron temperature of the material at the rear side of the target is estimated to be in the range of 140–300 eV. The diagnostic approach enables the study of warm dense matter states with low self-emissivity.展开更多
基金supported by the Newton China–UK joint research grant on laser–ion acceleration and novel terahertz radiationEPSRC grant EP/K022415/1 on advanced laser–ion acceleration strategies toward next generation healthcare and EPSRC grant EP/R006202/1+2 种基金supported by the National NaturalScience Foundation of China(Nos.11520101003 and11861121001)the Strategic Priority Research Program of the Chinese Academy of Sciences(Nos.XDB16010200 and XDB07030300)support from the National Postdoctoral Program for Innovative Talents(No.BX201600106)
文摘A multichannel calorimeter system is designed and constructed which is capable of delivering single-shot and broadband spectral measurement of terahertz(THz) radiation generated in intense laser–plasma interactions. The generation mechanism of backward THz radiation(BTR) is studied by using the multichannel calorimeter system in an intense picosecond laser–solid interaction experiment. The dependence of the BTR energy and spectrum on laser energy, target thickness and pre-plasma scale length is obtained. These results indicate that coherent transition radiation is responsible for the low-frequency component(<1 THz) of BTR. It is also observed that a large-scale pre-plasma primarily enhances the high-frequency component(>3 THz) of BTR.
基金Russian Science Foundation(RSF)(17-72-20272)Science and Technology Facilities Council(STFC)(EP/L000644/1)+3 种基金Engineering and Physical Sciences Research Council(EPSRC)(EP/L01663X/1)Los Alamos National Laboratory(LANL)National Nuclear Security Administration(NNSA)U.S.Department of Energy(DOE)(DE-AC5206NA25396)
文摘X-ray absorption spectroscopy is proposed as a method for studying the heating of solid-density matter excited by secondary X-ray radiation from a relativistic laser-produced plasma. The method was developed and applied to experiments involving thin silicon foils irradiated by 0.5–1.5 ps duration ultrahigh contrast laser pulses at intensities between 0.5 × 10^(20) and 2.5 × 10^(20) W∕cm^2. The electron temperature of the material at the rear side of the target is estimated to be in the range of 140–300 eV. The diagnostic approach enables the study of warm dense matter states with low self-emissivity.