期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Magneto-hydrodynamic flow of squeezed fluid with binary chemical reaction and activation energy 被引量:2
1
作者 S.AHMAD M.FAROOQ +2 位作者 n.a.mir Aisha ANJUM M.JAVED 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第5期1362-1373,共12页
The present exploration is conducted to describe the motion of viscous fluid embedded in squeezed channel under the applied magnetics effects.The processes of heat and mass transport incorporate the temperature-depend... The present exploration is conducted to describe the motion of viscous fluid embedded in squeezed channel under the applied magnetics effects.The processes of heat and mass transport incorporate the temperature-dependent binary chemical reaction with modified Arrhenius theory of activation energy function which is not yet disclosed for squeezing flow mechanism.The flow,heat and mass regime are exposed to be governed via dimensionless,highly non-linear,ordinary differential equations (ODEs) under no-slip walls boundary conditions.A well-tempered analytical convergent procedure is adopted for the solutions of boundary value problem.A detailed study is accounted through graphs in the form of flow velocity field,temperature and fluid concentration distributions for various emerging parameters of enormous interest.Skin-friction,Nusselt and Sherwood numbers have been acquired and disclosed through plots.The results indicate that fluid temperature follows an increasing trend with dominant dimensionless reaction rate σ and activation energy parameter E.However,an increment in σ and E parameters is found to decline in fluid concentration.The current study arises numerous engineering and industrial processes including polymer industry,compression and injection shaping,lubrication system,formation of paper sheets,thin fiber,molding of plastic sheets.In the area of chemical engineering,geothermal engineering,cooling of nuclear reacting,nuclear or chemical system,bimolecular reactions,biochemical process and electrically conducting polymeric flows can be controlled by utilizing magnetic fields.Motivated by such applications,the proposed study has been developed. 展开更多
关键词 squeezing flow magneto-hydrodynamics (MHD) activation energy binary chemical reaction
下载PDF
Investigations of Viscous Dissipation in Stagnation Point Flow Past a Stretchable Riga Wall: Modern Analysis of Heat Transport
2
作者 Aisha Anjum n.a.mir +2 位作者 M.Farooq M.Javed S.Ahmad 《Communications in Theoretical Physics》 SCIE CAS CSCD 2019年第4期377-383,共7页
This article scrutinizes the features of viscous dissipation in the stagnation point ?ow past through a linearly stretched Riga wall by implementing Cattaneo-Christov heat ?ux model. Viscous dissipation is carried out... This article scrutinizes the features of viscous dissipation in the stagnation point ?ow past through a linearly stretched Riga wall by implementing Cattaneo-Christov heat ?ux model. Viscous dissipation is carried out in Cattaneo-Christov diffusion analysis for the ?rst time in this letter. As a result of Cattaneo-Christov model, some extra terms of viscous dissipation are appeared in the energy equation. These extra terms of viscous dissipation are missing in the literature. On the utilization of suitable transformations, the equations governing the problem are reduced under the boundary layer approximation into the non-linear and dimensionless ordinary differential equations. Convergent approach is utilized to solve the dimensionless governing equations. The solution thus acquired is used to highlight the effects of emerging parameters on velocity distribution and ?uid's temperature through the graphs. Features of the drag force(or skin friction co-e?cient) are graphically interpreted. It is noticed that the presence of modi?ed Hartman number helps to reduce the ?uid's temperature but enhances the velocity pro?le. Further an enlargement in the value of thermal time relaxation parameter helps to decrease the temperature distribution. 展开更多
关键词 STAGNATION point Cattaneo-Christov theory Riga plate linear STRETCHING VISCOUS DISSIPATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部