The primary determination of this study is a numerical investigation of the entropygeneration (EG) in the steady two-region flow of viscous fluid and hybrid nanofluid (NF) in along-infinite vertical annulus having a c...The primary determination of this study is a numerical investigation of the entropygeneration (EG) in the steady two-region flow of viscous fluid and hybrid nanofluid (NF) in along-infinite vertical annulus having a clear region as well as porous media. Stoke’s and single-phase NF models are used to study the viscous fluid and hybrid nanofluid (HNF) heat transferdevelopments, respectively. Two types of nanoparticles are taken, such as copper (Cu) and sil-ver (Ag) within base fluid water to make it a HNF. Darcy-Brinkman law is also used to examinethe flow through the porous zone in the annulus. Necessary quantities have been used in thesystem of equations to transfer them into non-dimensional forms. For momentum and energytransport, the numerical results are evaluated for various model parameters and are examinedvia the shooting method in MATHEMATICA. It is noted that the momentum and energy trans-port are more significant when two immiscible fluids in a clear vertical annulus are taken. Thefindings also indicate that two-phase momentum and heat flow are greater when a NF is used in Region-II and lower when a HNF is used. The temperature (in Region-II) falls with a high na-nomaterials volume fraction (see Figure 4) while it is increased when the Hartman number isincreased. Moreover, velocity declines with increment in nanomaterials volume fraction. Thus,higher thermal conductivity can be accomplished by using a magnetic field.展开更多
文摘The primary determination of this study is a numerical investigation of the entropygeneration (EG) in the steady two-region flow of viscous fluid and hybrid nanofluid (NF) in along-infinite vertical annulus having a clear region as well as porous media. Stoke’s and single-phase NF models are used to study the viscous fluid and hybrid nanofluid (HNF) heat transferdevelopments, respectively. Two types of nanoparticles are taken, such as copper (Cu) and sil-ver (Ag) within base fluid water to make it a HNF. Darcy-Brinkman law is also used to examinethe flow through the porous zone in the annulus. Necessary quantities have been used in thesystem of equations to transfer them into non-dimensional forms. For momentum and energytransport, the numerical results are evaluated for various model parameters and are examinedvia the shooting method in MATHEMATICA. It is noted that the momentum and energy trans-port are more significant when two immiscible fluids in a clear vertical annulus are taken. Thefindings also indicate that two-phase momentum and heat flow are greater when a NF is used in Region-II and lower when a HNF is used. The temperature (in Region-II) falls with a high na-nomaterials volume fraction (see Figure 4) while it is increased when the Hartman number isincreased. Moreover, velocity declines with increment in nanomaterials volume fraction. Thus,higher thermal conductivity can be accomplished by using a magnetic field.