We the extend application of the generalized differential quadrature method(GDQM)to solve some coupled nonlinear Schr(o)dinger equations.The cosine-based GDQM is employed and the obtained system of ordinary differenti...We the extend application of the generalized differential quadrature method(GDQM)to solve some coupled nonlinear Schr(o)dinger equations.The cosine-based GDQM is employed and the obtained system of ordinary differential equations is solved via the fourth order Runge-Kutta method.The numerical solutions coincide with the exact solutions in desired machine precision and invariant quantities are conserved sensibly.Some comparisons with the methods applied in the literature are carried out.展开更多
The aim of this paper is to obtain numerical solutions of the one-dimensional,two-dimensional and coupled Burgers' equations through the generalized differential quadrature method(GDQM).The polynomial-based differ...The aim of this paper is to obtain numerical solutions of the one-dimensional,two-dimensional and coupled Burgers' equations through the generalized differential quadrature method(GDQM).The polynomial-based differential quadrature(PDQ) method is employed and the obtained system of ordinary differential equations is solved via the total variation diminishing Runge-Kutta(TVD-RK) method.The numerical solutions are satisfactorily coincident with the exact solutions.The method can compete against the methods applied in the literature.展开更多
In our paper published on Chinese Physics Letters 28(2011)020202,Table 4 should be as follows:Table 4.Conserved quantities and their relative errors for Manakov model.
文摘We the extend application of the generalized differential quadrature method(GDQM)to solve some coupled nonlinear Schr(o)dinger equations.The cosine-based GDQM is employed and the obtained system of ordinary differential equations is solved via the fourth order Runge-Kutta method.The numerical solutions coincide with the exact solutions in desired machine precision and invariant quantities are conserved sensibly.Some comparisons with the methods applied in the literature are carried out.
文摘The aim of this paper is to obtain numerical solutions of the one-dimensional,two-dimensional and coupled Burgers' equations through the generalized differential quadrature method(GDQM).The polynomial-based differential quadrature(PDQ) method is employed and the obtained system of ordinary differential equations is solved via the total variation diminishing Runge-Kutta(TVD-RK) method.The numerical solutions are satisfactorily coincident with the exact solutions.The method can compete against the methods applied in the literature.
文摘In our paper published on Chinese Physics Letters 28(2011)020202,Table 4 should be as follows:Table 4.Conserved quantities and their relative errors for Manakov model.