Design and experimental studies on a hybrid excitation flux switching motor as a traction motor for hybrid electric vehicles drive are presented.A stator body of the motor consists of not only laminated silicon-iron e...Design and experimental studies on a hybrid excitation flux switching motor as a traction motor for hybrid electric vehicles drive are presented.A stator body of the motor consists of not only laminated silicon-iron electromagnetic steel and three-phase armature windings,but also both of field excitation coils and permanent magnets working together as a variable field magnetomotive force source.On the other hand,a rotor is composed of just laminated silicon-iron electromagnetic steel with salient poles like switched reluctance motor.To bring out the best in drive performances of the hybrid excitation flux switching motor as a variable flux motor for the application,each material adopted for the stator and rotor body should be designed properly in terms of motor efficiency,maximum torque and power densities and so forth.As some of them,in this paper,thinner silicon-iron electromagnetic steel sheet and permanent magnets with high remanent and low amount of Dysprosium used are applied for achieving higher motor efficiency.Moreover,all coils wound flatwise and edgewise using rectangular wires are introduced to realizing high filling factor for reduced copper losses.Experimental tests using a 60kW prototype of the motor demonstrates the designed motor has good motor efficiency under frequent operating points expected for the target vehicle drive.展开更多
Paddy fields in the southeastern basin of Dianchi Lake have rapidly changed to greenhouses since 1999. A total of 61 surface soil samples, including 43 greenhouse soils, 12 upland soils, and 6 paddy soils, were collec...Paddy fields in the southeastern basin of Dianchi Lake have rapidly changed to greenhouses since 1999. A total of 61 surface soil samples, including 43 greenhouse soils, 12 upland soils, and 6 paddy soils, were collected from a flat lowland area mainly used for agricultural production fields in the southeastern basin of Dianchi Lake. Analyses of the soil samples indicated that the greenhouse soils were characterized by a lower organic matter content, lower pH, and higher soluble nutrients than the paddy soils in the area. The lower organic matter content of the greenhouse soils was ascribed to environmental or management factors rather than the clay content of the soil. Accumulation of soluble nutrients, especially inorganic N, was due to over-application of fertilizers, which also caused soil acidification. The average amount of readily available N, P, and K accumulated in the greenhouse soils was estimated to be equal to or higher than the annual input of these nutrients as a fertilizer, indicating that a reduction in fertilizer application was possible and recommended. In contrast, a very low available Si content was observed in the paddy soils, suggesting the need for Si application for rice production.展开更多
基金This paper is based on results obtained from the future pioneering program"Development of Magnetic Material Technology for High-efficiency Motors"commissioned by the New Energy and Industrial Technology Development Organization(NEDO)。
文摘Design and experimental studies on a hybrid excitation flux switching motor as a traction motor for hybrid electric vehicles drive are presented.A stator body of the motor consists of not only laminated silicon-iron electromagnetic steel and three-phase armature windings,but also both of field excitation coils and permanent magnets working together as a variable field magnetomotive force source.On the other hand,a rotor is composed of just laminated silicon-iron electromagnetic steel with salient poles like switched reluctance motor.To bring out the best in drive performances of the hybrid excitation flux switching motor as a variable flux motor for the application,each material adopted for the stator and rotor body should be designed properly in terms of motor efficiency,maximum torque and power densities and so forth.As some of them,in this paper,thinner silicon-iron electromagnetic steel sheet and permanent magnets with high remanent and low amount of Dysprosium used are applied for achieving higher motor efficiency.Moreover,all coils wound flatwise and edgewise using rectangular wires are introduced to realizing high filling factor for reduced copper losses.Experimental tests using a 60kW prototype of the motor demonstrates the designed motor has good motor efficiency under frequent operating points expected for the target vehicle drive.
基金Supported by the JSPS KAKENHI,Japan(No.21255007)
文摘Paddy fields in the southeastern basin of Dianchi Lake have rapidly changed to greenhouses since 1999. A total of 61 surface soil samples, including 43 greenhouse soils, 12 upland soils, and 6 paddy soils, were collected from a flat lowland area mainly used for agricultural production fields in the southeastern basin of Dianchi Lake. Analyses of the soil samples indicated that the greenhouse soils were characterized by a lower organic matter content, lower pH, and higher soluble nutrients than the paddy soils in the area. The lower organic matter content of the greenhouse soils was ascribed to environmental or management factors rather than the clay content of the soil. Accumulation of soluble nutrients, especially inorganic N, was due to over-application of fertilizers, which also caused soil acidification. The average amount of readily available N, P, and K accumulated in the greenhouse soils was estimated to be equal to or higher than the annual input of these nutrients as a fertilizer, indicating that a reduction in fertilizer application was possible and recommended. In contrast, a very low available Si content was observed in the paddy soils, suggesting the need for Si application for rice production.