Alumina thin films were deposited on fused quartz and SS304 substrate by pulsed rf magnetron sputtering with both direct and reactive methods. The films were characterised by energy dispersive X-ray spectroscopy, X-ra...Alumina thin films were deposited on fused quartz and SS304 substrate by pulsed rf magnetron sputtering with both direct and reactive methods. The films were characterised by energy dispersive X-ray spectroscopy, X-ray diffraction, scanning electron microscopy, field emission scanning electron microscopy and atomic force microscopy to reveal the microstructure, surface morphology and topography of thin films. Transmittance and reflectance of alumina thin film were evaluated after deposition on the quartz substrate. Transmittance of the quartz remains almost un-altered when alumina was deposited by the reactive sputtering. A marginal decrease of ~4% in the transmittance of quartz was, however, observed after deposition of alumina by direct sputtering. Infrared emittance of the substrate also remains almost constant after deposition of thin alumina film. Further, as-deposited alumina on SS304 obtained by both direct and reactive sputtering process was amorphous in nature. However, after annealing crystalline peaks were observed.展开更多
文摘Alumina thin films were deposited on fused quartz and SS304 substrate by pulsed rf magnetron sputtering with both direct and reactive methods. The films were characterised by energy dispersive X-ray spectroscopy, X-ray diffraction, scanning electron microscopy, field emission scanning electron microscopy and atomic force microscopy to reveal the microstructure, surface morphology and topography of thin films. Transmittance and reflectance of alumina thin film were evaluated after deposition on the quartz substrate. Transmittance of the quartz remains almost un-altered when alumina was deposited by the reactive sputtering. A marginal decrease of ~4% in the transmittance of quartz was, however, observed after deposition of alumina by direct sputtering. Infrared emittance of the substrate also remains almost constant after deposition of thin alumina film. Further, as-deposited alumina on SS304 obtained by both direct and reactive sputtering process was amorphous in nature. However, after annealing crystalline peaks were observed.