The power output of the photovoltaic(PV) system having multiple arrays gets reduced to a great extent when it is partially shaded due to environmental hindrances. The maximum power trackers which are conventionally us...The power output of the photovoltaic(PV) system having multiple arrays gets reduced to a great extent when it is partially shaded due to environmental hindrances. The maximum power trackers which are conventionally used may not be competent enough to find the maximum power point(MPP) during partially shaded conditions. The sensible reason for the failure of conventional trackers is during partial shaded conditions the PV arrays exhibit multi peak power curves, thereby making simple maximum power point tracking(MPPT) algorithms like perturb and observe(P&O) to get stuck with local maxima instead of capturing global maxima.Therefore, global search MPPT aided by evolutionary and swarm intelligence algorithms will be conducive to find global power point during partially shaded conditions. This work suggests a unified controller which feeds control signal to its power electronic conditioner placed at each module. The evolutionary algorithm which is taken into consideration in this work is differential evolution(DE).The performance of the proposed method is compared to the classical un-dimensional search controller and it is evident from the Matlab/Simulink results that the unified controller prevails over the distributed counterpart.展开更多
文摘The power output of the photovoltaic(PV) system having multiple arrays gets reduced to a great extent when it is partially shaded due to environmental hindrances. The maximum power trackers which are conventionally used may not be competent enough to find the maximum power point(MPP) during partially shaded conditions. The sensible reason for the failure of conventional trackers is during partial shaded conditions the PV arrays exhibit multi peak power curves, thereby making simple maximum power point tracking(MPPT) algorithms like perturb and observe(P&O) to get stuck with local maxima instead of capturing global maxima.Therefore, global search MPPT aided by evolutionary and swarm intelligence algorithms will be conducive to find global power point during partially shaded conditions. This work suggests a unified controller which feeds control signal to its power electronic conditioner placed at each module. The evolutionary algorithm which is taken into consideration in this work is differential evolution(DE).The performance of the proposed method is compared to the classical un-dimensional search controller and it is evident from the Matlab/Simulink results that the unified controller prevails over the distributed counterpart.