Ballistic parameter plays a major role in determining the re-entry trajectory.Lower ballistic coefficient offers an optimal re-entry,wherein the vehicle decelerates higher up in the atmosphere thereby decreasing the i...Ballistic parameter plays a major role in determining the re-entry trajectory.Lower ballistic coefficient offers an optimal re-entry,wherein the vehicle decelerates higher up in the atmosphere thereby decreasing the imposed aerothermal loads.The current computational study proposes an add-on,to the existing Orion-based re-entry vehicle:a duct circumventing the capsule from the shoulder to the base,to improve the aerocapture ability of the re-entry vehicle.The design cases are categorised based on a non-dimensional parameter termed the Annular Area Ratio(AAR).Dragand ballistic coefficient of the Ducted Re-entry Vehicles(DRVs)at various Mach numbers are evaluated and compared with those of the baseline model.The results show that the proposed design increases the drag for all the AARs considered in the subsonic regime.In the supersonic regime,ducted models of higher AAR are more promising with the increase in Mach number.DRVs also exhibit lower ballistic coefficients than their baseline counterparts.展开更多
基金supported by Research and Modernization FundSASTRA University(No.R&M/0035/So ME008/2015-17)。
文摘Ballistic parameter plays a major role in determining the re-entry trajectory.Lower ballistic coefficient offers an optimal re-entry,wherein the vehicle decelerates higher up in the atmosphere thereby decreasing the imposed aerothermal loads.The current computational study proposes an add-on,to the existing Orion-based re-entry vehicle:a duct circumventing the capsule from the shoulder to the base,to improve the aerocapture ability of the re-entry vehicle.The design cases are categorised based on a non-dimensional parameter termed the Annular Area Ratio(AAR).Dragand ballistic coefficient of the Ducted Re-entry Vehicles(DRVs)at various Mach numbers are evaluated and compared with those of the baseline model.The results show that the proposed design increases the drag for all the AARs considered in the subsonic regime.In the supersonic regime,ducted models of higher AAR are more promising with the increase in Mach number.DRVs also exhibit lower ballistic coefficients than their baseline counterparts.