The spatial arrangement,distribution and morphology of Fe-bearing intermetallics in AA6082 alloys depends on the manufacturing process of the alloy and thus influences the macroscopic properties.Here,the microstructur...The spatial arrangement,distribution and morphology of Fe-bearing intermetallics in AA6082 alloys depends on the manufacturing process of the alloy and thus influences the macroscopic properties.Here,the microstructure of a near industrial scale casting AA6082 Al alloy fabricated by:(a)direct chill casting,(b)Al-5 Ti-1 B grain refiner addition and(c)intensive melt shearing has been investigated by threedimensional visualization using SEM-based serial ultra microtomy tomography.The formation sequence of phases in AA6082 alloys is generally categorized into four stages:formation ofα-Al grains,Fe-bearing intermetallics,Mg_(2)Si phase,and eutectic rosettes.Results of three-dimensional visualization of the microstructure indicated that TiBparticles not only could nucleate Fe-bearingβ-intermetallics,but also could provide substrate for the formation of Fe-bearingα-intermetallics and Mg_(2)Si.A further deep analysis reveals that the essential condition for the formation of secondary phases such as Fe-bearing intermetallics and Mg_(2)Si phase is the build-up of a supersaturated solute front at theα-Al solid-liquid interface irrespective of the specific nucleation site.In addition,the results indicate that grain refinement processing causes the severe interconnectivity of Fe-bearingα-intermetallics.However,the intensive melt shearing is a better manufacturing process because the intermetallics are more evenly distributed and refined than with the addition of the grain refiner,thereby improving the properties of the alloy.展开更多
基金financially supported by the EPSRC(No.EP/N007638/1)the 2021 Jiangsu Shuangchuang(Mass Innovation and Entrepreneurship)Talent Program(No.JSSCBS20210702)。
文摘The spatial arrangement,distribution and morphology of Fe-bearing intermetallics in AA6082 alloys depends on the manufacturing process of the alloy and thus influences the macroscopic properties.Here,the microstructure of a near industrial scale casting AA6082 Al alloy fabricated by:(a)direct chill casting,(b)Al-5 Ti-1 B grain refiner addition and(c)intensive melt shearing has been investigated by threedimensional visualization using SEM-based serial ultra microtomy tomography.The formation sequence of phases in AA6082 alloys is generally categorized into four stages:formation ofα-Al grains,Fe-bearing intermetallics,Mg_(2)Si phase,and eutectic rosettes.Results of three-dimensional visualization of the microstructure indicated that TiBparticles not only could nucleate Fe-bearingβ-intermetallics,but also could provide substrate for the formation of Fe-bearingα-intermetallics and Mg_(2)Si.A further deep analysis reveals that the essential condition for the formation of secondary phases such as Fe-bearing intermetallics and Mg_(2)Si phase is the build-up of a supersaturated solute front at theα-Al solid-liquid interface irrespective of the specific nucleation site.In addition,the results indicate that grain refinement processing causes the severe interconnectivity of Fe-bearingα-intermetallics.However,the intensive melt shearing is a better manufacturing process because the intermetallics are more evenly distributed and refined than with the addition of the grain refiner,thereby improving the properties of the alloy.