This work studied the effects of adding Zr and Mn in amounts less than 1wt%on the microstructure,mechanical properties,casting properties,and corrosion resistance of Mg-Zn-Cu alloys containing 2.5wt%Cu and 2.5wt%-6.5w...This work studied the effects of adding Zr and Mn in amounts less than 1wt%on the microstructure,mechanical properties,casting properties,and corrosion resistance of Mg-Zn-Cu alloys containing 2.5wt%Cu and 2.5wt%-6.5wt%Zn.The hardness and electrical conductivity measurements were used to find an optimal heat treatment schedule with the best mechanical properties.It has been established that Zr significantly increases the yield strength of the alloys due to a strong grain refinement effect.However,the presence of Mn and Zr has a detrimental effect on alloy’s elongation at fracture.It was shown that the precipitation of the Mg_(2)Cu cathodic phase in the alloy structure negatively affects the corrosion behavior.Nevertheless,the addition of Mn decreases the corrosion rate of the investigated alloys.The best combination of the mechanical,casting,and corrosion properties were achieved in the alloys containing 2.5wt%Cu and 5wt%Zn.However,the Mn or Zr addition can improve the properties of the alloys;for example,the addition of Mn or Zr increases the fluidity of the alloys.展开更多
Complex studies of new Mg-Zn-Y-Zr system alloys have been carried out.The content range for the formation of the two-phase structure MgSS(Mg solid solution)+LPSO(long-period stacking ordered)in alloys of the Mg-Zn-Y-Z...Complex studies of new Mg-Zn-Y-Zr system alloys have been carried out.The content range for the formation of the two-phase structure MgSS(Mg solid solution)+LPSO(long-period stacking ordered)in alloys of the Mg-Zn-Y-Zr system was determined by thermodynamic calculations.The effect of heat treatment regimes on microstructure,mechanical,and corrosion properties was invest-igated.The fluidity,hot tearing tendency,and ignition temperature of the alloys were determined.The best combination of castability,mechanical,and corrosion properties was found for the Mg-2.4Zn-4Y-0.8Zr alloy.The alloys studied are superior to their industrial counterparts in terms of technological properties,while maintain high corrosion and mechanical properties.The increased level of pro-perties is achieved by a suitable heat treatment regime that provides a complete transformation of the 18R to 14H modification of the LPSO phase.展开更多
基金financial support form the Ministry of Science and Higher Education of the Russian Federation in the framework of MegaGrant(No.220-7868-7477)。
文摘This work studied the effects of adding Zr and Mn in amounts less than 1wt%on the microstructure,mechanical properties,casting properties,and corrosion resistance of Mg-Zn-Cu alloys containing 2.5wt%Cu and 2.5wt%-6.5wt%Zn.The hardness and electrical conductivity measurements were used to find an optimal heat treatment schedule with the best mechanical properties.It has been established that Zr significantly increases the yield strength of the alloys due to a strong grain refinement effect.However,the presence of Mn and Zr has a detrimental effect on alloy’s elongation at fracture.It was shown that the precipitation of the Mg_(2)Cu cathodic phase in the alloy structure negatively affects the corrosion behavior.Nevertheless,the addition of Mn decreases the corrosion rate of the investigated alloys.The best combination of the mechanical,casting,and corrosion properties were achieved in the alloys containing 2.5wt%Cu and 5wt%Zn.However,the Mn or Zr addition can improve the properties of the alloys;for example,the addition of Mn or Zr increases the fluidity of the alloys.
基金the Ministry of Science and Higher Education of the Russian Federation for financial support under the Megagrant(No.075-15-2022-1133)by the Strategic Academic Leadership Program“Priority 2030”(No.K2-2022-001)For the sample preparation and TEM investigation,the authors thank the Collective Use Equipment Center“Material Science and Metallurgy”for the equipment modernization program represented by the Ministry of Higher Education and Science of Russian Federation(No.075-15-2021-696).
文摘Complex studies of new Mg-Zn-Y-Zr system alloys have been carried out.The content range for the formation of the two-phase structure MgSS(Mg solid solution)+LPSO(long-period stacking ordered)in alloys of the Mg-Zn-Y-Zr system was determined by thermodynamic calculations.The effect of heat treatment regimes on microstructure,mechanical,and corrosion properties was invest-igated.The fluidity,hot tearing tendency,and ignition temperature of the alloys were determined.The best combination of castability,mechanical,and corrosion properties was found for the Mg-2.4Zn-4Y-0.8Zr alloy.The alloys studied are superior to their industrial counterparts in terms of technological properties,while maintain high corrosion and mechanical properties.The increased level of pro-perties is achieved by a suitable heat treatment regime that provides a complete transformation of the 18R to 14H modification of the LPSO phase.