L^p approximation problems in system identification with RBF neural networks are investigated. It is proved that by superpositions of some functions of one variable in L^ploc(R), one can approximate continuous funct...L^p approximation problems in system identification with RBF neural networks are investigated. It is proved that by superpositions of some functions of one variable in L^ploc(R), one can approximate continuous functionals defined on a compact subset of L^P(K) and continuous operators from a compact subset of L^p1 (K1) to a compact subset of L^p2 (K2). These results show that if its activation function is in L^ploc(R) and is not an even polynomial, then this RBF neural networks can approximate the above systems with any accuracy.展开更多
基金Foundation item: tile National Natural Science Foundation of China (No. 10471017).
文摘L^p approximation problems in system identification with RBF neural networks are investigated. It is proved that by superpositions of some functions of one variable in L^ploc(R), one can approximate continuous functionals defined on a compact subset of L^P(K) and continuous operators from a compact subset of L^p1 (K1) to a compact subset of L^p2 (K2). These results show that if its activation function is in L^ploc(R) and is not an even polynomial, then this RBF neural networks can approximate the above systems with any accuracy.