Rhenium separation from molybdenum in molybdenite minerals and waste leachate has become an emerging challenge.Addressing this challenge,we prepared a set of protein-based alkylamine/alkylammonium salts complexes as e...Rhenium separation from molybdenum in molybdenite minerals and waste leachate has become an emerging challenge.Addressing this challenge,we prepared a set of protein-based alkylamine/alkylammonium salts complexes as extractants for selective uptake of rhenium from molybdenum,where the protein component turned into the insoluble amyloid-like structure when its internal disulfide bonds were reduced,namely phase-transition process.Among them,the phase-transited lysozyme and methyletrioctyleammonium chloride complex(PTL-N263)exhibited the most efficient adsorption at the alkaline condition for the electrostatic interaction between negatively charged metal ions with positively charged center(R_(4)N^(+))in N263,where negatively charged protein residues hindered the ion exchange of Cl^(-)in N263 for larger size Mo species(Mo_(7)O_(24)^(6-))than smaller size Re species(ReO^(4-)).The adsorption follows the Freundlich model and pseudo-second-order kinetics,which exhibits toplevel adsorption performance with a maximum adsorption capacity of 124 mg/g and a separation factor(β_(Re/Mo))of 2.78×10^(3)for Re.The adsorption capacity per unit area(57.2 mg/(g m^(2)))is 1.6–41 times higher than previously reported adsorbents,and the cost for adsorbing 1 g of Re(VII)is$1.07,indicating its industrial capability.This adsorption strategy can be applied to separating Re from Mo in binary solutions and industrial wastewater with other competing ions.展开更多
基金supported by the National Science Fund for Distinguished Young Scholars(Grant No.52225301)the National Key R&D Program of China(Grant Nos.2020YFA0710400 and 2020YFA0710402)+5 种基金the National Natural Science Foundation of China(Grant Nos.21905166,2187513251903147)the 111 Project(Grant No.B14041)the Fundamental Research Funds for the Central Universities(Grant Nos.GK201801003,2020TS092,and GK202205013)the Innovation Capability Support Program of Shaanxi(Grant No.2020TD024)the Science and Technology Innovation Team of Shaanxi Province(Grant No.2022TD-35)。
文摘Rhenium separation from molybdenum in molybdenite minerals and waste leachate has become an emerging challenge.Addressing this challenge,we prepared a set of protein-based alkylamine/alkylammonium salts complexes as extractants for selective uptake of rhenium from molybdenum,where the protein component turned into the insoluble amyloid-like structure when its internal disulfide bonds were reduced,namely phase-transition process.Among them,the phase-transited lysozyme and methyletrioctyleammonium chloride complex(PTL-N263)exhibited the most efficient adsorption at the alkaline condition for the electrostatic interaction between negatively charged metal ions with positively charged center(R_(4)N^(+))in N263,where negatively charged protein residues hindered the ion exchange of Cl^(-)in N263 for larger size Mo species(Mo_(7)O_(24)^(6-))than smaller size Re species(ReO^(4-)).The adsorption follows the Freundlich model and pseudo-second-order kinetics,which exhibits toplevel adsorption performance with a maximum adsorption capacity of 124 mg/g and a separation factor(β_(Re/Mo))of 2.78×10^(3)for Re.The adsorption capacity per unit area(57.2 mg/(g m^(2)))is 1.6–41 times higher than previously reported adsorbents,and the cost for adsorbing 1 g of Re(VII)is$1.07,indicating its industrial capability.This adsorption strategy can be applied to separating Re from Mo in binary solutions and industrial wastewater with other competing ions.