Kinetics and isotherms of Triton X-100 sorption on soil,base-extracted soil(BE),humic acid(HA) and humin(HM) were investigated respectively to get better understanding on characteristics of the surfactant sorpti...Kinetics and isotherms of Triton X-100 sorption on soil,base-extracted soil(BE),humic acid(HA) and humin(HM) were investigated respectively to get better understanding on characteristics of the surfactant sorption onto different soil organic matters(SOMs).It was demonstrated that the kinetics results could be satisfactorily described by the pseudo-second order model.The half of the time to reach equilibrium(t1/2) for different sorbents followed the sequence of soil 〉 HA 〉 BE 〉 HM.Furthermore,the calculated equilibrium sorption capacity(Ceq) was found in the sequence of HA 〉 BE 〉 HM 〉 soil,which agreed well with the experimental results.The isotherms of Triton X-100 sorption on soil and HA could be well described by the S-type isotherm,but BE and HM by the L-type.The isotherms of all the four sorbents were found reasonably fitted to the Langmuir equation.The Kd value,defined as the ratio of Triton X-100 in sorbent and in the equilibrium solution for given concentrations,generally followed the order of HM 〉 HA 〉 soil 〉 BE.Separated HM and HA showed high affnity for Triton X-100,but the HA and HM in soil and BE were tightly bounded by the minerals.Thus,the HA on the soil surface might dominate the sorption,whereas the bounded HM would play a key role upon the surfactants being penetrated inside the soil.展开更多
Mechanism of treatment and remediation of synthetic Cu^2+ polluted water body by membrane and electro-winning combination process was investigated.The influences of electrolysis voltage,pH,and electrolysis time on th...Mechanism of treatment and remediation of synthetic Cu^2+ polluted water body by membrane and electro-winning combination process was investigated.The influences of electrolysis voltage,pH,and electrolysis time on the metal recovery effciencies were studied.Relationship between trans-membrane pressure drop(△P),additions ratio,initial Cu^2+ concentration on operating effciency,stability of membrane and the possibility of water reuse were also investigated.The morphology of membrane and electrodes were observed using scanning electron microscopy(SEM),the composition of surface deposits was ascertained using combined energy dispersive X-ray spectroscopy(EDX) and atomic absorption spectrophotometer.The results showed that using low pressure reverse osmosis(LPRO),Cu^2+ concentration could increase from 20 to 100 mg/L or even higher in concentrated solutions and permeate water conductivity could be less than 20 μS/cm.The addition of sodium dodecy/sulfate sodium dodecyl sulfate improved Cu^2+ removal effciency,while EDTA had little side influence.In electro-reduction process,using plante electrode cell,Cu^2+ concentration could be further reduced to 5 mg/L,and the average current effciency ranged from 9% to 40%.Using 3D electrolysis treatment,Cu^2+ concentration could be reduced to 0.5 mg/L with a current effciency range 60%-70%.展开更多
In microbial fuel cell (MFC), the rate of electron transfer to anode electrode is a key intrinsic limiting factor on the power output of MFCs. Using Klebsiella pneumoniae (K. pneumoniae) strain L17 as biocatalyst, we ...In microbial fuel cell (MFC), the rate of electron transfer to anode electrode is a key intrinsic limiting factor on the power output of MFCs. Using Klebsiella pneumoniae (K. pneumoniae) strain L17 as biocatalyst, we studied the mechanism of electron shuttle via self-producing mediator in a cubic air-chamber MFC. To eliminate the influence of biofilm mechanism, the anode electrode was coated with microfiltration membrane (0.22 μm). Data showed that the microfiltration membrane coated and uncoated MFCs achieved the maximum voltage outputs of 316.2 and 426.2 mV after 270 and 120 h, respectively. When the medium was replaced in MFCs that had the highest power generation, the power output dropped by 62.1% and 8.8%, and required 120 and 48 h to resume the original level in the coated and uncoated MFCs, respectively. The results suggested an electron-shuttle mechanism rather than biofilm mechanism was responsible for electricity generation in the membrane coated MFC. Cyclic voltammetric measurements demonstrated the presence of an electrochemical active compound produced by K. pneumoniae strain L17, which was identified to be 2,6-di-tert-butyl-p-benzoquinon (2,6-DTBBQ) by GC-MS. 2,6-DTBBQ, as a recyclable electron shuttle, could transfer electrons between K. pneumoniae L17 and the anode electrode.展开更多
This paper focuses on the outcome and the main performance of the immobilized microbial that treats landfill leachate. Based on the analysis of COD and ammonia-nitrogen of the influent and effluent, research was done ...This paper focuses on the outcome and the main performance of the immobilized microbial that treats landfill leachate. Based on the analysis of COD and ammonia-nitrogen of the influent and effluent, research was done on the high removal efficiency of COD and ammonium nitrogen by immobilized microbial. The leachate composition was analyzed qualitatively using GC-MS before and after being treated. Biological loading of efficient microbial flora on the carrier was measured by Kjeldahl’s method. Finally, the patterns of immobilized microbe were observed through scanning electron microscopy (SEM). The results showed that in immobilized microorganisms system, the efficiencies of COD and nitrogen were 98.3% and 99.9%, respectively. There was a great reduction of organic components in effluent. When the immobilized biomass on the carrier was 38 g·L?1 (H2O), the filamentous microorganism was highly developed. There was no inhibitory effect on the nitrobacteria and nitrococcus, when ammonia was over 200 mg·L?1 and NH3 over 150 mg·L?1. At a high organic loading, it still had good nitrification. This paper also compares the performance of immobilized microbial with free microbial under the same condition. The immobilized microbial technology demonstrated better than the latter in all aspects.展开更多
The integration of rivers and basins highly implies the possible existence of certain relationships between hierarchical characteristics of river networks and primary basin factors.Here we investigated river networks ...The integration of rivers and basins highly implies the possible existence of certain relationships between hierarchical characteristics of river networks and primary basin factors.Here we investigated river networks in two large basins,the Yangtze River and the Yellow River,characterized with basic factors such as annual precipitation,slope,soil erodibility and vegetation.Hierarchical analysis demonstrated a fair self-similarity of river networks at the stream-order 1-5 in both rivers,described by the structural parameters including bifurcation ratio,side-branching ratio,drainage density,and length of headwater-river.Besides precipitation,basin slope was essential in shaping river networks in both basins,showing a significant positive correlation(R^2=0.39-0.85)to bifurcation ratio,side-branching ratio,and drainage density.Given the same basin slope(5°-15°),the higher soil erodibility and sparse vegetation would promote greater side-branching ratio and drainage density in the Yellow River,which were estimated 11.97%and 63.70%larger,respectively than those in the Yangtze River.This study highlights the importance to formulate basin-specific strategies for water and soil conservation in terms of different structures of river networks.展开更多
Phytoplankton play an important role in nutrient cycling and energy conversion. However, phytoplankton community is poorly understood in large river ecosystems. Based on the large-scale samplings conducted in spring a...Phytoplankton play an important role in nutrient cycling and energy conversion. However, phytoplankton community is poorly understood in large river ecosystems. Based on the large-scale samplings conducted in spring and autumn of 2017, a systematic study has been made on seasonal and spatial distributions of phytoplankton community along the mainstream of the Yangtze River. As results, 6 phyla were identified and 59 phytoplankton species were detected using microscopy, including Bacillariophyta(29 species), Chlorophyta(13 species) and Cyanophyta(8 species) as the dominant group. Moreover, the density of phytoplankton was ranged 0.05×10^6–1.90×10^6 cells/L and the biomass was 0.01–1.01 mg/L, both reaching their maximum in the middle reach from Yichang to Wuhan. Significant seasonal difference of phytoplankton community was observed and spatial dissimilarity in spring was revealed. The cell abundance and biomass of phytoplankton could be fairly estimated by chlorophylla, and redundancy analysis indicated that water temperature, dissolved oxygen, biochemical oxygen demand, nitrite, and ammonia nitrogen were the most important explanatory environmental factors for phytoplankton compositions in the Yangtze River.展开更多
基金supported by the National Basic Research Program (973) of China (No. 2007CB407202)
文摘Kinetics and isotherms of Triton X-100 sorption on soil,base-extracted soil(BE),humic acid(HA) and humin(HM) were investigated respectively to get better understanding on characteristics of the surfactant sorption onto different soil organic matters(SOMs).It was demonstrated that the kinetics results could be satisfactorily described by the pseudo-second order model.The half of the time to reach equilibrium(t1/2) for different sorbents followed the sequence of soil 〉 HA 〉 BE 〉 HM.Furthermore,the calculated equilibrium sorption capacity(Ceq) was found in the sequence of HA 〉 BE 〉 HM 〉 soil,which agreed well with the experimental results.The isotherms of Triton X-100 sorption on soil and HA could be well described by the S-type isotherm,but BE and HM by the L-type.The isotherms of all the four sorbents were found reasonably fitted to the Langmuir equation.The Kd value,defined as the ratio of Triton X-100 in sorbent and in the equilibrium solution for given concentrations,generally followed the order of HM 〉 HA 〉 soil 〉 BE.Separated HM and HA showed high affnity for Triton X-100,but the HA and HM in soil and BE were tightly bounded by the minerals.Thus,the HA on the soil surface might dominate the sorption,whereas the bounded HM would play a key role upon the surfactants being penetrated inside the soil.
基金supported by the National Special Program on Water (No. 2008ZX07212-01)the National Natural Science Foundation of China (No. 20877001)the China Postdoctoral Foundation (No. 20070420255)
文摘Mechanism of treatment and remediation of synthetic Cu^2+ polluted water body by membrane and electro-winning combination process was investigated.The influences of electrolysis voltage,pH,and electrolysis time on the metal recovery effciencies were studied.Relationship between trans-membrane pressure drop(△P),additions ratio,initial Cu^2+ concentration on operating effciency,stability of membrane and the possibility of water reuse were also investigated.The morphology of membrane and electrodes were observed using scanning electron microscopy(SEM),the composition of surface deposits was ascertained using combined energy dispersive X-ray spectroscopy(EDX) and atomic absorption spectrophotometer.The results showed that using low pressure reverse osmosis(LPRO),Cu^2+ concentration could increase from 20 to 100 mg/L or even higher in concentrated solutions and permeate water conductivity could be less than 20 μS/cm.The addition of sodium dodecy/sulfate sodium dodecyl sulfate improved Cu^2+ removal effciency,while EDTA had little side influence.In electro-reduction process,using plante electrode cell,Cu^2+ concentration could be further reduced to 5 mg/L,and the average current effciency ranged from 9% to 40%.Using 3D electrolysis treatment,Cu^2+ concentration could be reduced to 0.5 mg/L with a current effciency range 60%-70%.
基金supported by the National Natural Science Foundation of China (No 20777013)Natural Science Foundation of Guangdong Province, China (No 07006759)The Sci & Tech Innovation project of Guangdong Academy of Sciences, China (Gtard No CX200704)
文摘In microbial fuel cell (MFC), the rate of electron transfer to anode electrode is a key intrinsic limiting factor on the power output of MFCs. Using Klebsiella pneumoniae (K. pneumoniae) strain L17 as biocatalyst, we studied the mechanism of electron shuttle via self-producing mediator in a cubic air-chamber MFC. To eliminate the influence of biofilm mechanism, the anode electrode was coated with microfiltration membrane (0.22 μm). Data showed that the microfiltration membrane coated and uncoated MFCs achieved the maximum voltage outputs of 316.2 and 426.2 mV after 270 and 120 h, respectively. When the medium was replaced in MFCs that had the highest power generation, the power output dropped by 62.1% and 8.8%, and required 120 and 48 h to resume the original level in the coated and uncoated MFCs, respectively. The results suggested an electron-shuttle mechanism rather than biofilm mechanism was responsible for electricity generation in the membrane coated MFC. Cyclic voltammetric measurements demonstrated the presence of an electrochemical active compound produced by K. pneumoniae strain L17, which was identified to be 2,6-di-tert-butyl-p-benzoquinon (2,6-DTBBQ) by GC-MS. 2,6-DTBBQ, as a recyclable electron shuttle, could transfer electrons between K. pneumoniae L17 and the anode electrode.
基金the Department of Environmental Engineering Second Phase of 211 Project, Peking University (Grant No. 211-2-Department of Environmental Engi-neering-09)
文摘This paper focuses on the outcome and the main performance of the immobilized microbial that treats landfill leachate. Based on the analysis of COD and ammonia-nitrogen of the influent and effluent, research was done on the high removal efficiency of COD and ammonium nitrogen by immobilized microbial. The leachate composition was analyzed qualitatively using GC-MS before and after being treated. Biological loading of efficient microbial flora on the carrier was measured by Kjeldahl’s method. Finally, the patterns of immobilized microbe were observed through scanning electron microscopy (SEM). The results showed that in immobilized microorganisms system, the efficiencies of COD and nitrogen were 98.3% and 99.9%, respectively. There was a great reduction of organic components in effluent. When the immobilized biomass on the carrier was 38 g·L?1 (H2O), the filamentous microorganism was highly developed. There was no inhibitory effect on the nitrobacteria and nitrococcus, when ammonia was over 200 mg·L?1 and NH3 over 150 mg·L?1. At a high organic loading, it still had good nitrification. This paper also compares the performance of immobilized microbial with free microbial under the same condition. The immobilized microbial technology demonstrated better than the latter in all aspects.
基金supported by the National Natural Science Foundation of China(Grant No.51721006)
文摘The integration of rivers and basins highly implies the possible existence of certain relationships between hierarchical characteristics of river networks and primary basin factors.Here we investigated river networks in two large basins,the Yangtze River and the Yellow River,characterized with basic factors such as annual precipitation,slope,soil erodibility and vegetation.Hierarchical analysis demonstrated a fair self-similarity of river networks at the stream-order 1-5 in both rivers,described by the structural parameters including bifurcation ratio,side-branching ratio,drainage density,and length of headwater-river.Besides precipitation,basin slope was essential in shaping river networks in both basins,showing a significant positive correlation(R^2=0.39-0.85)to bifurcation ratio,side-branching ratio,and drainage density.Given the same basin slope(5°-15°),the higher soil erodibility and sparse vegetation would promote greater side-branching ratio and drainage density in the Yellow River,which were estimated 11.97%and 63.70%larger,respectively than those in the Yangtze River.This study highlights the importance to formulate basin-specific strategies for water and soil conservation in terms of different structures of river networks.
基金supported by the National Key Basic Research Program of China (Grant No. 2016YFC0402102)the National Natural Science Foundation of China (Grant No. 51721006)
文摘Phytoplankton play an important role in nutrient cycling and energy conversion. However, phytoplankton community is poorly understood in large river ecosystems. Based on the large-scale samplings conducted in spring and autumn of 2017, a systematic study has been made on seasonal and spatial distributions of phytoplankton community along the mainstream of the Yangtze River. As results, 6 phyla were identified and 59 phytoplankton species were detected using microscopy, including Bacillariophyta(29 species), Chlorophyta(13 species) and Cyanophyta(8 species) as the dominant group. Moreover, the density of phytoplankton was ranged 0.05×10^6–1.90×10^6 cells/L and the biomass was 0.01–1.01 mg/L, both reaching their maximum in the middle reach from Yichang to Wuhan. Significant seasonal difference of phytoplankton community was observed and spatial dissimilarity in spring was revealed. The cell abundance and biomass of phytoplankton could be fairly estimated by chlorophylla, and redundancy analysis indicated that water temperature, dissolved oxygen, biochemical oxygen demand, nitrite, and ammonia nitrogen were the most important explanatory environmental factors for phytoplankton compositions in the Yangtze River.