为探究无人机多源遥感影像估算玉米叶面积指数(Leaf area index,LAI)垂直分布,在田间设置了密度和播期试验,在7个生育时期利用无人机采集了可见光、多光谱和热红外影像并同步获取玉米LAI垂直分布数据。同时,为合理制定无人机飞行任务,...为探究无人机多源遥感影像估算玉米叶面积指数(Leaf area index,LAI)垂直分布,在田间设置了密度和播期试验,在7个生育时期利用无人机采集了可见光、多光谱和热红外影像并同步获取玉米LAI垂直分布数据。同时,为合理制定无人机飞行任务,分析了不同飞行高度和不同太阳高度角下获取的无人机影像对估算玉米LAI的影响。基于无人机影像提取的与玉米LAI相关性较高的植被指数、纹理信息和冠层温度等特征,利用7种机器学习方法分别构建了玉米冠层不同高度LAI估算模型,从中选取鲁棒性强的2个模型用于分析在不同飞行高度和不同太阳高度角下估算LAI的差异。研究结果表明,MLPR和RFR模型对玉米LAI估算鲁棒性最强,全生育期下模型rRMSE为11.31%(MLPR)和11.42%(RFR)。玉米冠层LAI垂直分布估算误差,所有模型的平均rRMSE分别为9.1%(LAI-1)、14.19%(LAI-2)、18.62%(LAI-3)、23.29%(LAI-4)和26.7%(LAI-5)。对于玉米穗位叶及以下部位的LAI估算误差均在20%以下,得到了较好精度。同时,在不同飞行高度和太阳高度角试验中可以得出,当飞行高度为30 m时LAI估算精度最高,R^(2)为0.73,rRMSE为10.97%,在09:00—10:00观测的玉米LAI估算精度最高。无人机多源遥感影像数据可以准确估算玉米冠层LAI垂直分布,及时掌握玉米功能叶片LAI长势差异,可为玉米品种筛选提供辅助。展开更多
光合有效辐射吸收比率(fraction of absorbed photosynthetically active radiation,FAPAR)是反映作物产量的重要参数之一。无人机遥感能够快速无损地获取高分辨率植被冠层光谱信息,已成为进行物理化参数反演的重要手段。以不同播期玉...光合有效辐射吸收比率(fraction of absorbed photosynthetically active radiation,FAPAR)是反映作物产量的重要参数之一。无人机遥感能够快速无损地获取高分辨率植被冠层光谱信息,已成为进行物理化参数反演的重要手段。以不同播期玉米为研究对象,基于无人机搭载多光谱传感器,提取植被指数与植被纹理特征,使用偏最小二乘(partial least squares regression,PLSR)方法将二者结合反演玉米FAPAR,并与传统单独使用植被指数或植被纹理特征反演植被FAPAR的方法进行比较。结果表明:使用传统方法单独利用植被指数反演FAPAR(验证RMSE最低为7.33×10^(-2),rRMSE最低为8.66%)的效果比单独利用纹理特征反演FAPAR(验证RMSE最低为9.50×10^(-2),rRMSE最低为11.23%)的精度更高;使用PLSR方法单独利用植被指数或纹理特征估算FAPAR的效果比传统方法精度更高(植被指数与纹理特征的验证RMSE最低分别为6.77×10^(-2)和5.24×10^(-2),rRMSE最低分别为8.01%和6.19%);使用PLSR方法将植被指数与纹理特征相结合估算FAPAR(验证RMSE最低为4.72×10^(-2),rRMSE最低为5.57%)的效果比单独使用植被指数或纹理特征估算FAPAR的精度更高。综上,使用PLSR方法将植被指数和植被纹理特征相结合来反演玉米冠层FAPAR可行,为作物FAPAR遥感反演研究提供了新的思路。展开更多
In order to explain delusional beliefs, one must first consider what factors should be included in a theory of delusion. Unlike a one-factor theory, a two-factor theory of delusion argues that not only anomalous exper...In order to explain delusional beliefs, one must first consider what factors should be included in a theory of delusion. Unlike a one-factor theory, a two-factor theory of delusion argues that not only anomalous experience (the first factor) but also an impairment of the belief-evaluation system (the second factor) is required. Recently, two-factor theorists have adopted various Bayesian approaches in order to give a more accurate description of delusion formation. By reviewing the progression from a one-factor theory to a two-factor theory, I argue that in light of the second factor's requirements, different proposed impairments can be unified within a consistent belief-evaluation system. Under this interpretation of the second factor, I further argue that the role of a mechanism responsible for detecting bizarreness is wrongly neglected. I conclude that the second factor is a compound system which consists of differing functional parts, one of which functions to detect bizarreness in different stages of delusion; moreover, I hold that the impairment can be one or several of these functional parts.展开更多
文摘为探究无人机多源遥感影像估算玉米叶面积指数(Leaf area index,LAI)垂直分布,在田间设置了密度和播期试验,在7个生育时期利用无人机采集了可见光、多光谱和热红外影像并同步获取玉米LAI垂直分布数据。同时,为合理制定无人机飞行任务,分析了不同飞行高度和不同太阳高度角下获取的无人机影像对估算玉米LAI的影响。基于无人机影像提取的与玉米LAI相关性较高的植被指数、纹理信息和冠层温度等特征,利用7种机器学习方法分别构建了玉米冠层不同高度LAI估算模型,从中选取鲁棒性强的2个模型用于分析在不同飞行高度和不同太阳高度角下估算LAI的差异。研究结果表明,MLPR和RFR模型对玉米LAI估算鲁棒性最强,全生育期下模型rRMSE为11.31%(MLPR)和11.42%(RFR)。玉米冠层LAI垂直分布估算误差,所有模型的平均rRMSE分别为9.1%(LAI-1)、14.19%(LAI-2)、18.62%(LAI-3)、23.29%(LAI-4)和26.7%(LAI-5)。对于玉米穗位叶及以下部位的LAI估算误差均在20%以下,得到了较好精度。同时,在不同飞行高度和太阳高度角试验中可以得出,当飞行高度为30 m时LAI估算精度最高,R^(2)为0.73,rRMSE为10.97%,在09:00—10:00观测的玉米LAI估算精度最高。无人机多源遥感影像数据可以准确估算玉米冠层LAI垂直分布,及时掌握玉米功能叶片LAI长势差异,可为玉米品种筛选提供辅助。
文摘光合有效辐射吸收比率(fraction of absorbed photosynthetically active radiation,FAPAR)是反映作物产量的重要参数之一。无人机遥感能够快速无损地获取高分辨率植被冠层光谱信息,已成为进行物理化参数反演的重要手段。以不同播期玉米为研究对象,基于无人机搭载多光谱传感器,提取植被指数与植被纹理特征,使用偏最小二乘(partial least squares regression,PLSR)方法将二者结合反演玉米FAPAR,并与传统单独使用植被指数或植被纹理特征反演植被FAPAR的方法进行比较。结果表明:使用传统方法单独利用植被指数反演FAPAR(验证RMSE最低为7.33×10^(-2),rRMSE最低为8.66%)的效果比单独利用纹理特征反演FAPAR(验证RMSE最低为9.50×10^(-2),rRMSE最低为11.23%)的精度更高;使用PLSR方法单独利用植被指数或纹理特征估算FAPAR的效果比传统方法精度更高(植被指数与纹理特征的验证RMSE最低分别为6.77×10^(-2)和5.24×10^(-2),rRMSE最低分别为8.01%和6.19%);使用PLSR方法将植被指数与纹理特征相结合估算FAPAR(验证RMSE最低为4.72×10^(-2),rRMSE最低为5.57%)的效果比单独使用植被指数或纹理特征估算FAPAR的精度更高。综上,使用PLSR方法将植被指数和植被纹理特征相结合来反演玉米冠层FAPAR可行,为作物FAPAR遥感反演研究提供了新的思路。
文摘In order to explain delusional beliefs, one must first consider what factors should be included in a theory of delusion. Unlike a one-factor theory, a two-factor theory of delusion argues that not only anomalous experience (the first factor) but also an impairment of the belief-evaluation system (the second factor) is required. Recently, two-factor theorists have adopted various Bayesian approaches in order to give a more accurate description of delusion formation. By reviewing the progression from a one-factor theory to a two-factor theory, I argue that in light of the second factor's requirements, different proposed impairments can be unified within a consistent belief-evaluation system. Under this interpretation of the second factor, I further argue that the role of a mechanism responsible for detecting bizarreness is wrongly neglected. I conclude that the second factor is a compound system which consists of differing functional parts, one of which functions to detect bizarreness in different stages of delusion; moreover, I hold that the impairment can be one or several of these functional parts.