In this paper, we study an optomechanical device consisting of a Fabry-P6rot cavity with two dielectric nanospheres trapped near the cavity mirrors by an external driving laser. In the condition where the distances be...In this paper, we study an optomechanical device consisting of a Fabry-P6rot cavity with two dielectric nanospheres trapped near the cavity mirrors by an external driving laser. In the condition where the distances between the nanospheres and cavity mirrors are small enough, the Casimir force helps the optomechanical coupling to induce a steady-state optomechanical entanglement of the mechanical and optical modes in a certain regime of parameters. We investigate in detail the dependence of the steady- state optomechanical entanglement on external control parameters of the system, i.e., the effective detuning, the pump powers of the cavity, the cavity decay rate and the wavelength of the driving field. It is found that the large steady-state optomechanical entanglement, i.e. EN = 5.76, can be generated with experimentally feasible parameters, i.e. the pump power P = 18.2 μW, the cavity decay rate K = 0.5 MHz and the wavelength of the laser AL=1064 nm, which should be checked by optical measurement.展开更多
基金supported by the National Basic Research Program of China(Grant Nos.2011CB922203,2012CB921603 and 2012CB922104)the National Natural Science Foundation of China(Grant Nos.11304010,11174027 and 11375093)
文摘In this paper, we study an optomechanical device consisting of a Fabry-P6rot cavity with two dielectric nanospheres trapped near the cavity mirrors by an external driving laser. In the condition where the distances between the nanospheres and cavity mirrors are small enough, the Casimir force helps the optomechanical coupling to induce a steady-state optomechanical entanglement of the mechanical and optical modes in a certain regime of parameters. We investigate in detail the dependence of the steady- state optomechanical entanglement on external control parameters of the system, i.e., the effective detuning, the pump powers of the cavity, the cavity decay rate and the wavelength of the driving field. It is found that the large steady-state optomechanical entanglement, i.e. EN = 5.76, can be generated with experimentally feasible parameters, i.e. the pump power P = 18.2 μW, the cavity decay rate K = 0.5 MHz and the wavelength of the laser AL=1064 nm, which should be checked by optical measurement.