期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Long-term thermal regimes of the Qinghai-Tibet Railway embankments in plateau permafrost regions 被引量:16
1
作者 niu fu un LIU MingHao +3 位作者 CHENG GuoDong LIN ZhanJu LUO Jing YIN GuoAn 《Science China Earth Sciences》 SCIE EI CAS CSCD 2015年第9期1669-1676,共8页
Ten years of ground temperature data(2003–2013) indicate that the long-term thermal regimes within embankments of the Qinghai-Tibet Railway(QTR) vary significantly with different embankment structures. Obvious asymme... Ten years of ground temperature data(2003–2013) indicate that the long-term thermal regimes within embankments of the Qinghai-Tibet Railway(QTR) vary significantly with different embankment structures. Obvious asymmetries exist in the ground temperature fields within the traditional embankment(TE) and the crushed-rock basement embankment(CRBE). Measurements indicate that the TE and CRBE are not conducive to maintaining thermal stability. In contrast, the ground temperature fields of both the crushed-rock sloped embankment(CRSE) and the U-shaped crushed-rock embankment(UCRE) were symmetrical. However, the UCRE gave better thermal stability than the CRSE because slow warming of deep permafrost was observed under the CRSE. Therefore, the UCRE has the best long-term effect of decreasing ground temperature and improving the symmetry of the temperature field. More generally, it is concluded that construction using the cooling-roadbed principle meets the design requirements for long-term stability of the railway and for train transport speeds of 100 km h?1. However, temperature differences between the two shoulders, which exist in all embankments shoulders, may cause potential uneven settlement and might require maintenance. 展开更多
关键词 Qinghai-Tibet Railway PERMAFROST embankment structure thermal regime long-term stability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部