期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Hierarchical Federated Learning: Architecture, Challenges, and Its Implementation in Vehicular Networks
1
作者 YAN Jintao CHEN Tan +3 位作者 XIE Bowen SUN Yuxuan ZHOU Sheng niu zhisheng 《ZTE Communications》 2023年第1期38-45,共8页
Federated learning(FL)is a distributed machine learning(ML)framework where several clients cooperatively train an ML model by exchanging the model parameters without directly sharing their local data.In FL,the limited... Federated learning(FL)is a distributed machine learning(ML)framework where several clients cooperatively train an ML model by exchanging the model parameters without directly sharing their local data.In FL,the limited number of participants for model aggregation and communication latency are two major bottlenecks.Hierarchical federated learning(HFL),with a cloud-edge-client hierarchy,can leverage the large coverage of cloud servers and the low transmission latency of edge servers.There are growing research interests in implementing FL in vehicular networks due to the requirements of timely ML training for intelligent vehicles.However,the limited number of participants in vehicular networks and vehicle mobility degrade the performance of FL training.In this context,HFL,which stands out for lower latency,wider coverage and more participants,is promising in vehicular networks.In this paper,we begin with the background and motivation of HFL and the feasibility of implementing HFL in vehicular networks.Then,the architecture of HFL is illustrated.Next,we clarify new issues in HFL and review several existing solutions.Furthermore,we introduce some typical use cases in vehicular networks as well as our initial efforts on implementing HFL in vehicular networks.Finally,we conclude with future research directions. 展开更多
关键词 hierarchical federated learning vehicular network MOBILITY convergence analysis
下载PDF
面向“双碳”战略的绿色通信与网络:挑战与对策 被引量:10
2
作者 牛志升 周盛 孙宇璇 《通信学报》 EI CSCD 北大核心 2022年第2期1-14,共14页
面向国家"碳达峰"与"碳中和"的"双碳"战略需求,移动通信与网络需要在满足不断增长的业务需求前提下大幅度降低全网能耗,因此需要研究使用更少的能量传递更多信息(SMILE, send more information bits with... 面向国家"碳达峰"与"碳中和"的"双碳"战略需求,移动通信与网络需要在满足不断增长的业务需求前提下大幅度降低全网能耗,因此需要研究使用更少的能量传递更多信息(SMILE, send more information bits with less energy)的理论与技术。为了应对该挑战,仅靠无线传输技术的改进和硬件实现水平的提高是远远不够的,需要从系统和网络的角度探索能量的高效利用机理与方法。从能量的"节流"和"开源"2个维度展开,并针对日益增长的计算能耗给出解决方案。具体地,通过引入超蜂窝网络架构实现网络的柔性覆盖与弹性接入,使业务基站和边缘服务器在业务量较低时可以进入休眠状态,减少能量的浪费(即"节流")。同时,大量引入可再生绿色能源(即"开源"),通过能量流与信息流的智能适配,大幅降低电网的能耗。进一步地,通过网络功能虚拟化、通信与计算资源的高能效协同,以及移动智能体的分布式计算与协同等手段,实现绿色计算与人工智能算法。 展开更多
关键词 绿色通信 可再生能源 超蜂窝网络 人工智能 绿色计算
下载PDF
地面三维激光扫描仪误差分析及标定 被引量:4
3
作者 夏桂锁 牛志盛 +1 位作者 刘芳 伏燕军 《传感技术学报》 CAS CSCD 北大核心 2020年第11期1620-1626,共7页
提出一种基于距离误差辨识的地面三维激光扫描仪标定方法。介绍了仪器的结构及光路系统,进而分析了仪器的各项系统误差,并设计了误差标定算法。标定过程中,在较大范围内布置多个靶标,利用地面三维激光扫描仪在距离靶标不同位置处测量靶... 提出一种基于距离误差辨识的地面三维激光扫描仪标定方法。介绍了仪器的结构及光路系统,进而分析了仪器的各项系统误差,并设计了误差标定算法。标定过程中,在较大范围内布置多个靶标,利用地面三维激光扫描仪在距离靶标不同位置处测量靶标的空间坐标,计算得到任意两个靶标的距离值,根据标定算法辨识仪器修正参数。该标定方法不需要获得靶标的空间坐标,无需进行扫描仪坐标系与世界坐标系的转换,大大减少了标定参数的数量。标定试验及精度验证试验表明,距离仪器10 m、20 m、30 m附近的点位测量精度分别为±2.7 mm、±2.9 mm、±4.1 mm,满足±(2+L/10000)mm的精度指标要求。该标定方法操作简便、对标定条件要求低,具有较强的实用性。 展开更多
关键词 地面三维激光扫描仪 标定 距离 靶标 参数辨识
下载PDF
Scheduling Policies for Federated Learning in Wireless Networks: An Overview 被引量:2
4
作者 SHI Wenqi SUN Yuxuan +2 位作者 HUANG Xiufeng ZHOU Sheng niu zhisheng 《ZTE Communications》 2020年第2期11-19,共9页
Due to the increasing need for massive data analysis and machine learning model training at the network edge, as well as the rising concerns about data privacy, a new distrib?uted training framework called federated l... Due to the increasing need for massive data analysis and machine learning model training at the network edge, as well as the rising concerns about data privacy, a new distrib?uted training framework called federated learning (FL) has emerged and attracted much at?tention from both academia and industry. In FL, participating devices iteratively update the local models based on their own data and contribute to the global training by uploading mod?el updates until the training converges. Therefore, the computation capabilities of mobile de?vices can be utilized and the data privacy can be preserved. However, deploying FL in re?source-constrained wireless networks encounters several challenges, including the limited energy of mobile devices, weak onboard computing capability, and scarce wireless band?width. To address these challenges, recent solutions have been proposed to maximize the convergence rate or minimize the energy consumption under heterogeneous constraints. In this overview, we first introduce the backgrounds and fundamentals of FL. Then, the key challenges in deploying FL in wireless networks are discussed, and several existing solu?tions are reviewed. Finally, we highlight the open issues and future research directions in FL scheduling. 展开更多
关键词 federated learning wireless network edge computing SCHEDULING
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部