A multibody system including a drilling riser system,tensioners and a floating platform is key equipment for offshore oil and gas drilling.Most of the previous studies only focus on the drilling riser system rather th...A multibody system including a drilling riser system,tensioners and a floating platform is key equipment for offshore oil and gas drilling.Most of the previous studies only focus on the drilling riser system rather than the multibody system.Mechanical characteristics of the deepwater drilling riser system cannot be analyzed accurately in a simplified model.Therefore,a three-dimensional multibody analysis program is developed.The static and dynamic characteristics of the deepwater drilling riser system under different platform motions are analyzed based on the developed program.The results show that the static displacement of the riser system with tensioners is smaller than that without tensioners,which means the tensioners can suppress the deformation of the riser system.Under surge and sway motions of the platform,the dynamic displacement of the riser system with tensioners is also smaller than that without tensioners due to the tensioner suppression effect.Besides,the heave motion induces a uniform axial vibration of the riser system,while roll and pitch motions excite the riser system to vibrate laterally.Compared with the stress amplitude due to surge and sway motions,the stress amplitude of the riser system due to heave,roll and pitch motions is relatively small but cannot be neglected.展开更多
The electrochemical CO_(2)reduction reaction(CO_(2)RR)to yield high-value added fuels and chemicals provides a promising approach towards global carbon neutrality.Constant endeavors have been devoted to the exploratio...The electrochemical CO_(2)reduction reaction(CO_(2)RR)to yield high-value added fuels and chemicals provides a promising approach towards global carbon neutrality.Constant endeavors have been devoted to the exploration of high-efficiency catalyst with rapid reaction kinetics,low energy input,and high selectivity.In addition to the maximum metal atomic utilization and unique catalytic performance of single-atom catalyst(SAC),dual-atomic-site catalysts(DASCs)offer more sophisticated and tunable atomic structure through the modulations of another adjacent metal atom,which can bring new opportunities for CO_(2)RR as a deeper extension of SACs and have recently aroused surging interest.In this review,we highlight the recent advances on DASCs for enhancing CO_(2)RR.First,the classification,synthesis,and identification of DASCs are provided according to the geometric structure and electronic configuration of dual-atomic active sites.Then,the catalytic applications of DASCs in CO_(2)RR are categorized based on marriage-type,hetero-nuclear,and homo-nuclear dual-atomic sites.Particularly,the structure-activity relationship of DASCs in CO_(2)RR is elaborately summarized through systematically analyzing the reaction pathways and the atom structures.Finally,the opportunities and challenges are proposed for inspiring the design of future DASCs with high structural accuracy and high CO_(2)RR activity and selectivity.展开更多
基金This work was financially supported by National Natural Science Foundation of China(Grant No.51809279)Major National Science and Technology Program(Grant No.2016ZX05028-001-05)+3 种基金National Key R&D Program of China(Grant No.2017YFC0804500)Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT14R58)the Fundamental Research Funds for the Central Universities(Grant No.20CX02302A)the Opening Fund of National Engineering Laboratory of Offshore Geophysical and Exploration Equipment(Grant No.20CX02302A)。
文摘A multibody system including a drilling riser system,tensioners and a floating platform is key equipment for offshore oil and gas drilling.Most of the previous studies only focus on the drilling riser system rather than the multibody system.Mechanical characteristics of the deepwater drilling riser system cannot be analyzed accurately in a simplified model.Therefore,a three-dimensional multibody analysis program is developed.The static and dynamic characteristics of the deepwater drilling riser system under different platform motions are analyzed based on the developed program.The results show that the static displacement of the riser system with tensioners is smaller than that without tensioners,which means the tensioners can suppress the deformation of the riser system.Under surge and sway motions of the platform,the dynamic displacement of the riser system with tensioners is also smaller than that without tensioners due to the tensioner suppression effect.Besides,the heave motion induces a uniform axial vibration of the riser system,while roll and pitch motions excite the riser system to vibrate laterally.Compared with the stress amplitude due to surge and sway motions,the stress amplitude of the riser system due to heave,roll and pitch motions is relatively small but cannot be neglected.
基金supported by Shandong Provincial Natural Science Foundation (ZR2019BB025)the Project of “20 items of University” of Jinan (2018GXRC031)the National Natural Science Foundation of China (22071172)
文摘The electrochemical CO_(2)reduction reaction(CO_(2)RR)to yield high-value added fuels and chemicals provides a promising approach towards global carbon neutrality.Constant endeavors have been devoted to the exploration of high-efficiency catalyst with rapid reaction kinetics,low energy input,and high selectivity.In addition to the maximum metal atomic utilization and unique catalytic performance of single-atom catalyst(SAC),dual-atomic-site catalysts(DASCs)offer more sophisticated and tunable atomic structure through the modulations of another adjacent metal atom,which can bring new opportunities for CO_(2)RR as a deeper extension of SACs and have recently aroused surging interest.In this review,we highlight the recent advances on DASCs for enhancing CO_(2)RR.First,the classification,synthesis,and identification of DASCs are provided according to the geometric structure and electronic configuration of dual-atomic active sites.Then,the catalytic applications of DASCs in CO_(2)RR are categorized based on marriage-type,hetero-nuclear,and homo-nuclear dual-atomic sites.Particularly,the structure-activity relationship of DASCs in CO_(2)RR is elaborately summarized through systematically analyzing the reaction pathways and the atom structures.Finally,the opportunities and challenges are proposed for inspiring the design of future DASCs with high structural accuracy and high CO_(2)RR activity and selectivity.