Most manufacturers of solar modules guarantee the minimum performance of their modules for 20 to 25 years, and 30-year warranties have been introduced. The warranty typically guarantees that the modules will perform t...Most manufacturers of solar modules guarantee the minimum performance of their modules for 20 to 25 years, and 30-year warranties have been introduced. The warranty typically guarantees that the modules will perform to at least 90% capacity in the first 10 years and to at least 80% in the following 10 - 15 years. Early degradation resulting from design flaws, materials or processing issues is often apparent from startup to the first few years in service. Importantly, many module failures and performance losses are the result of gradual accumulated damage resulting from long-term outdoor exposure in harsh environments, referred. Many of these processes occur on relatively long time scales and the various degradation processes may be chemical, electrical, thermal or mechanical in nature. These are either initiated or accelerated by the combined stresses of the service environment, in particular solar radiation, temperature and moisture, and other stresses such as salt air, wind and snow. Accelerated Life Testing (ALT) test methodology is normally predicated on first being able to reproduce a specific degradation or failure mode without altering it (correlation);and, second, to produce that result in less than real-time acceleration. Degradation and failure may result when an applied stress exceeds material or product strength. This may be a one-time catastrophic event, the result of cyclic fatigue, or a gradual decline in requisite properties due to ageing mechanisms. Engineers in the manufacturing industries have used accelerated test (AT) experiments for many decades. The purpose of AT experiments is to acquire reliability information quickly. Test units of a material, component, subsystem or entire systems are subjected to higher-than-usual levels of one or more accelerating variables such as temperature or stress. Then the AT results are used to predict life of the units at use conditions. The extrapolation is typically justified (correctly or incorrectly) on the basis of physically motivated models or a combination of empirical model fitting with a sufficient amount of previous experience in testing similar units. The need to extrapolate in both time and the accelerating variables generally necessitates the use of fully parametric models. Statisticians have made important contributions in the development of appropriate stochastic models for AT data [typically a distribution for the response and regression relationships between the parameters of this distribution and the accelerating variable(s)], statistical methods for AT planning (choice of accelerating variable levels and allocation of available test units to those levels) and methods of estimation of suitable reliability metrics. This paper provides a review of many of the AT models that have been used successfully in this area.展开更多
The aim of this article is to study the effects of the shading rate on the electrical performance parameters of CIGS PV modules. The study concerns a new flexible CIGS type photovoltaic module with a power of 90</s...The aim of this article is to study the effects of the shading rate on the electrical performance parameters of CIGS PV modules. The study concerns a new flexible CIGS type photovoltaic module with a power of 90</span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">W, manufactured by the company Shenzhen Shine Solar Co</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">, Ltd. This module, reference SN-CIGS90, is tested under the initial conditions to ensure its correct operation and to determine the initial values of the electrical parameters before shading. After this characterization test, the module is exposed under the actual operating conditions of the Renewable Energies Study and Research Center (CERER), located in Dakar, then 4 types of shading are performed with the same mask: partial shading 25% partial shading, 50% partial shading, 75% partial shading, and 100% full shading. The variation rates obtained on the experimental values of the 4 types of shading carried out determine that the shading phenomenon constitutes a factor that influences negatively on the electrical parameters of a CIGS-based PV module. Indeed, for 25% of the surface of the shaded module, there is a reduction of 58.139% of the maximum power and of 60.507% of the efficiency and for shading of 100%, the module loses 84.436% of its maximum power and 84.135% of its performance.展开更多
Abstract *Corresponding author. In this paper, the electrical properties of heterojunction solar cells thin film n-CdS/p-CdTe from dielectric model have been studied. Based on the expression of the minority, carriers ...Abstract *Corresponding author. In this paper, the electrical properties of heterojunction solar cells thin film n-CdS/p-CdTe from dielectric model have been studied. Based on the expression of the minority, carriers density in the p-CdTe base of solar cell, the photocurrent density and that of the photo voltage are determined according to the cell dimensions, doping levels, the absorption coefficient, the solar irradiance and the temperature, etc. Fitting using Mathcad and Origin Lab software on the photocurrent and the photovoltage of the n-CdS/p-CdTe enabled to determine the series, shunt resistance and the maximum power point. The results obtained, in good agreement with experimental results, allow operating simulations for optimizing maximum outputs parameters (I<sub>p</sub>, V<sub>p</sub>). Thereafter, it is proposed a type of photovoltaic generator module with a good command of the design parameters for better efficiency.展开更多
In this paper, a comparative study of the maximum power on the shading rate on the maximum power of thin film PV modules. Thus two thin film PV modules of type Copper indium gallium selenide, CIGS, of 90W power and a ...In this paper, a comparative study of the maximum power on the shading rate on the maximum power of thin film PV modules. Thus two thin film PV modules of type Copper indium gallium selenide, CIGS, of 90W power and a CdTe (Cadmium telluride)/CdS (Cadmium sulfide) module, of maximum power 75 W. These modules, reference SN-CIGS90 and CX3 75 were tested under the conditions of the installation site to ensure their proper functioning and to determine the initial values of electrical parameters before shading. The results obtained are as follows: for the CIGS: Pm (80.717 W);Vco (23.06 V), Icc (3.5 A) and for the CdTe:Pm (54.914 W);Vco (35.52 V), Icc (1.546 A). After this characterization test, the modules are exposed to real operating conditions at the Center for Study and Research on the renewable energy (CERER), Cheikh Anta Diop University in Dakar. Four types of shading are performed on each module with the same mask: partial shading at 25%, 50%, 75% and complete shading at 100%. The comparison of the variation rates obtained on the experimental values of the 4 types of shading carried out on each module, shows that, the phenomenon of shading constitutes an environmental factor which influences negatively the maximum power of the thin film PV modules. But this reduction depends on the surface of the shaded module, the nature of the mask but also the technology used. Indeed, for a shading of 25% of the surface of the two modules, we note a reduction of 21.32% of power for the CIGS, against 40.53% for the CdTe/CdS, that is to say a difference which approaches 20%.展开更多
Depositing an antireflection coating on the front surface of solar cells allows a significant reduction in reflection losses. It thus allows an increase in the efficiency of the cells. A modeling of the refractive ind...Depositing an antireflection coating on the front surface of solar cells allows a significant reduction in reflection losses. It thus allows an increase in the efficiency of the cells. A modeling of the refractive indices and the thicknesses of an optimal antireflection coating has been proposed. Thus, the average reflective losses can be reduced to less than 8% and less than 2.4% in a large wavelength range respectively for a single-layer and double-layer anti-reflective coating types. However, the difficulty of finding these model materials (materials with the same refractive index) led us to introduce two notions: the refractive index difference and the thickness difference. These two notions allowed us to compare the reflectivity of the antireflection layer in silicon surface. Thus, the lower the refractive index difference is, the more the material resembles to the ideal material (in refractive index), and thus its reflective losses are minimal. SiNx and SiO2/TiO2 antireflection layers, in the wavelength range between 400 and 1100 nm, have reduced the average reflectivity losses to less than 9% and 2.3% respectively.展开更多
文摘Most manufacturers of solar modules guarantee the minimum performance of their modules for 20 to 25 years, and 30-year warranties have been introduced. The warranty typically guarantees that the modules will perform to at least 90% capacity in the first 10 years and to at least 80% in the following 10 - 15 years. Early degradation resulting from design flaws, materials or processing issues is often apparent from startup to the first few years in service. Importantly, many module failures and performance losses are the result of gradual accumulated damage resulting from long-term outdoor exposure in harsh environments, referred. Many of these processes occur on relatively long time scales and the various degradation processes may be chemical, electrical, thermal or mechanical in nature. These are either initiated or accelerated by the combined stresses of the service environment, in particular solar radiation, temperature and moisture, and other stresses such as salt air, wind and snow. Accelerated Life Testing (ALT) test methodology is normally predicated on first being able to reproduce a specific degradation or failure mode without altering it (correlation);and, second, to produce that result in less than real-time acceleration. Degradation and failure may result when an applied stress exceeds material or product strength. This may be a one-time catastrophic event, the result of cyclic fatigue, or a gradual decline in requisite properties due to ageing mechanisms. Engineers in the manufacturing industries have used accelerated test (AT) experiments for many decades. The purpose of AT experiments is to acquire reliability information quickly. Test units of a material, component, subsystem or entire systems are subjected to higher-than-usual levels of one or more accelerating variables such as temperature or stress. Then the AT results are used to predict life of the units at use conditions. The extrapolation is typically justified (correctly or incorrectly) on the basis of physically motivated models or a combination of empirical model fitting with a sufficient amount of previous experience in testing similar units. The need to extrapolate in both time and the accelerating variables generally necessitates the use of fully parametric models. Statisticians have made important contributions in the development of appropriate stochastic models for AT data [typically a distribution for the response and regression relationships between the parameters of this distribution and the accelerating variable(s)], statistical methods for AT planning (choice of accelerating variable levels and allocation of available test units to those levels) and methods of estimation of suitable reliability metrics. This paper provides a review of many of the AT models that have been used successfully in this area.
文摘The aim of this article is to study the effects of the shading rate on the electrical performance parameters of CIGS PV modules. The study concerns a new flexible CIGS type photovoltaic module with a power of 90</span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">W, manufactured by the company Shenzhen Shine Solar Co</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">, Ltd. This module, reference SN-CIGS90, is tested under the initial conditions to ensure its correct operation and to determine the initial values of the electrical parameters before shading. After this characterization test, the module is exposed under the actual operating conditions of the Renewable Energies Study and Research Center (CERER), located in Dakar, then 4 types of shading are performed with the same mask: partial shading 25% partial shading, 50% partial shading, 75% partial shading, and 100% full shading. The variation rates obtained on the experimental values of the 4 types of shading carried out determine that the shading phenomenon constitutes a factor that influences negatively on the electrical parameters of a CIGS-based PV module. Indeed, for 25% of the surface of the shaded module, there is a reduction of 58.139% of the maximum power and of 60.507% of the efficiency and for shading of 100%, the module loses 84.436% of its maximum power and 84.135% of its performance.
文摘Abstract *Corresponding author. In this paper, the electrical properties of heterojunction solar cells thin film n-CdS/p-CdTe from dielectric model have been studied. Based on the expression of the minority, carriers density in the p-CdTe base of solar cell, the photocurrent density and that of the photo voltage are determined according to the cell dimensions, doping levels, the absorption coefficient, the solar irradiance and the temperature, etc. Fitting using Mathcad and Origin Lab software on the photocurrent and the photovoltage of the n-CdS/p-CdTe enabled to determine the series, shunt resistance and the maximum power point. The results obtained, in good agreement with experimental results, allow operating simulations for optimizing maximum outputs parameters (I<sub>p</sub>, V<sub>p</sub>). Thereafter, it is proposed a type of photovoltaic generator module with a good command of the design parameters for better efficiency.
文摘In this paper, a comparative study of the maximum power on the shading rate on the maximum power of thin film PV modules. Thus two thin film PV modules of type Copper indium gallium selenide, CIGS, of 90W power and a CdTe (Cadmium telluride)/CdS (Cadmium sulfide) module, of maximum power 75 W. These modules, reference SN-CIGS90 and CX3 75 were tested under the conditions of the installation site to ensure their proper functioning and to determine the initial values of electrical parameters before shading. The results obtained are as follows: for the CIGS: Pm (80.717 W);Vco (23.06 V), Icc (3.5 A) and for the CdTe:Pm (54.914 W);Vco (35.52 V), Icc (1.546 A). After this characterization test, the modules are exposed to real operating conditions at the Center for Study and Research on the renewable energy (CERER), Cheikh Anta Diop University in Dakar. Four types of shading are performed on each module with the same mask: partial shading at 25%, 50%, 75% and complete shading at 100%. The comparison of the variation rates obtained on the experimental values of the 4 types of shading carried out on each module, shows that, the phenomenon of shading constitutes an environmental factor which influences negatively the maximum power of the thin film PV modules. But this reduction depends on the surface of the shaded module, the nature of the mask but also the technology used. Indeed, for a shading of 25% of the surface of the two modules, we note a reduction of 21.32% of power for the CIGS, against 40.53% for the CdTe/CdS, that is to say a difference which approaches 20%.
文摘Depositing an antireflection coating on the front surface of solar cells allows a significant reduction in reflection losses. It thus allows an increase in the efficiency of the cells. A modeling of the refractive indices and the thicknesses of an optimal antireflection coating has been proposed. Thus, the average reflective losses can be reduced to less than 8% and less than 2.4% in a large wavelength range respectively for a single-layer and double-layer anti-reflective coating types. However, the difficulty of finding these model materials (materials with the same refractive index) led us to introduce two notions: the refractive index difference and the thickness difference. These two notions allowed us to compare the reflectivity of the antireflection layer in silicon surface. Thus, the lower the refractive index difference is, the more the material resembles to the ideal material (in refractive index), and thus its reflective losses are minimal. SiNx and SiO2/TiO2 antireflection layers, in the wavelength range between 400 and 1100 nm, have reduced the average reflectivity losses to less than 9% and 2.3% respectively.