期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Salinity effect on the compaction behaviour,matric suction,stiffness and microstructure of a silty soil 被引量:2
1
作者 Zi Ying Yu-Jun Cui +1 位作者 nadia benahmed Myriam Duc 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第4期855-863,共9页
To better understand the salinity effect on the compaction behaviour of soil,standard Proctor compaction test was conducted on soil samples with different salinities.Matric suction and small-strain shear modulus,G_(ma... To better understand the salinity effect on the compaction behaviour of soil,standard Proctor compaction test was conducted on soil samples with different salinities.Matric suction and small-strain shear modulus,G_(max),were determined and pore size distribution was also investigated on samples statically compacted at different water contents.Results showed that with the decrease of soil salinity from initial value of 2.1‰(g of salt/kg of dry soil)to zero,the maximum dry density increased and the optimum water content decreased,whereas there was no significant change with the increase of soil salinity from 2.1‰ to 6.76‰.Interestingly,it was observed that G_(max) also decreased when the soil salinity decreased from initial value of 2.1‰ to zero and kept almost constant when the soil salinity increased from 2.1‰ to 6.76‰,for dry samples with similar matric suction and also for samples compacted at optimum state and on wet side whose matric suctions were slightly different due to the difference in remoulded water content.Furthermore,the effect of salinity on compaction behaviour and G_(max) decreased for samples compacted from dry side to wet side.The pore size distribution exhibited bi-modal characteristics with two populations of micro-and macro-pores not only for samples compacted on dry side and at optimum state,but also for those compacted on wet side.Further examination showed that the modal size of micro-pores shifted to lower values and that of macro-pores shifted to higher values for saline soil compared to the soil without salt. 展开更多
关键词 SILTS COMPACTION SUCTION STIFFNESS MICROSTRUCTURE
下载PDF
Determining osmotic suction through electrical conductivity for unsaturated low-plasticity soils
2
作者 Zi Ying nadia benahmed +1 位作者 Yu-Jun Cui Myriam Duc 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第6期1946-1955,共10页
Determining osmotic suction from the electrical conductivity(EC)of soil pore water was widely reported in the literature.However,while dealing with unsaturated soils,they do not have enough soil pore water to be extra... Determining osmotic suction from the electrical conductivity(EC)of soil pore water was widely reported in the literature.However,while dealing with unsaturated soils,they do not have enough soil pore water to be extracted for a reliable measurement of EC.In this paper,the chilled-mirror dew-point hygrometer and contact filter paper method were used to determine the total and matric suctions for low-plasticity soils with different salinities(0.05‰,2.1‰,and 6.76‰).A new piecewise function was proposed to calculate the osmotic suction,with the piecewise point corresponding to the first occurrence of precipitated salt in mixed salt solutions(synthetic seawater).EC,ion and salt concentrations used for osmotic suction calculation were transformed from the established relationships of mixed salt solution instead of experimental measurement.The calculated osmotic suction by the proposed equation and the equations in the literature was compared with the indirectly measured one(the difference between the measured total and matric suctions).Results showed that the calculated osmotic suction,especially the one calculated using the proposed function,was in fair agreement with the indirectly measured data(especially for specimens with higher salinity of 6.76‰),suggesting that the transformation of EC and concentrations from the established relationship is a good alternative to direct measurement for lowplasticity soil.In particular,the proposed method could be applied to unsaturated low-plasticity soils which do not have enough soil pore water for a proper EC measurement. 展开更多
关键词 Unsaturated soils Mixed salt solutions Osmotic suction Electrical conductivity(EC)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部