AIM: To analyse the influence of Smad7, antagonist of transforming growth factor (TGF)-β canonical signaling pathways on hepatic stellate cell (HSC) transdifferentia-tion in detail. METHODS: We systematically analyse...AIM: To analyse the influence of Smad7, antagonist of transforming growth factor (TGF)-β canonical signaling pathways on hepatic stellate cell (HSC) transdifferentia-tion in detail. METHODS: We systematically analysed genes regulated by TGF-β/Smad7 in activated HSCs by microarray analy-sis and validated the results using real time polymerase chain reaction and Western blotting analysis. RESULTS: We identif ied 100 known and unknown tar-gets underlying the regulation of Smad7 expression and delineated 8 gene ontology groups. Hk2, involved in glycolysis, was one of the most downregulated proteins, while BMP2, activator of the Smad1/5/8 pathway, was extremely upregulated by Smad7. However, BMP2 de-pendent Smad1 activation could be inhibited in vitro by Smad7 overexpression in HSCs. CONCLUSION: We conclude (1) the existence of a tight crosstalk of TGF-β and BMP2 pathways in HSCs and (2) a Smad7 dependently decreased sugar metabolism ameliorates HSC activation probably by energy with-drawal.展开更多
基金Supported by Deutsche Forschungsgemeinschaft DO373/6-1 and SFB TRR77,BMBF (HepatoSys), European Research Advisory Board and the Schlieben-Lange-Programm of the Ministerium für Wissenschaft, Forschung und Kunst of Baden-Württemberg and the Europflische Sozialfond
文摘AIM: To analyse the influence of Smad7, antagonist of transforming growth factor (TGF)-β canonical signaling pathways on hepatic stellate cell (HSC) transdifferentia-tion in detail. METHODS: We systematically analysed genes regulated by TGF-β/Smad7 in activated HSCs by microarray analy-sis and validated the results using real time polymerase chain reaction and Western blotting analysis. RESULTS: We identif ied 100 known and unknown tar-gets underlying the regulation of Smad7 expression and delineated 8 gene ontology groups. Hk2, involved in glycolysis, was one of the most downregulated proteins, while BMP2, activator of the Smad1/5/8 pathway, was extremely upregulated by Smad7. However, BMP2 de-pendent Smad1 activation could be inhibited in vitro by Smad7 overexpression in HSCs. CONCLUSION: We conclude (1) the existence of a tight crosstalk of TGF-β and BMP2 pathways in HSCs and (2) a Smad7 dependently decreased sugar metabolism ameliorates HSC activation probably by energy with-drawal.