Desalination is considered a viable method to overcome the issue of water scarcity either from waste water or seawater. For this purpose, this study employed a facile approach to develop surface immobilized oxidized-M...Desalination is considered a viable method to overcome the issue of water scarcity either from waste water or seawater. For this purpose, this study employed a facile approach to develop surface immobilized oxidized-MWCNTs(o-MWCNTs) onto crosslinked polyvinyl alcohol(PVA) membrane. Firstly, modified polysulphone substrate was synthesized on to which crosslinked PVA layer was spread onto it. PVA layer act as active layer for surface immobilization of o-MWCNTs in varying concentration. The functional group analysis, morphology and roughness of membranes surface was conducted out using FTIR, SEM and AFM respectively. The results showed that modified membranes, immobilized o-MWCNTs enhanced the salt rejection(Na_(2)SO_(4)) upto 99.8%. After contacting with Escherichia coli and Staphylococcus aureus for 2.5 h the bacteria mortalities of the fabricated membrane could reach 96.9%. Furthermore, the antibiofouling tests showed that OP-MWCNTs(1-5) modified membranes have higher anti-biofouling property than the control membrane.展开更多
Carbon fiber reinforced high density polyethylene multi-layered laminated composite panels(HDPE/CF MLCP) with excellent in-plane properties along transverse direction have been formulated. Composite architectures wi...Carbon fiber reinforced high density polyethylene multi-layered laminated composite panels(HDPE/CF MLCP) with excellent in-plane properties along transverse direction have been formulated. Composite architectures with carbon fiber(CF) designed in 2D layout in conventional composites can alleviate their properties in thickness direction, but all attempts so far developed have achieved restrained success. Here,we have exposed an approach to the high strength composite challenge, without altering the 2D stack design on the basis of concept of fiber reinforced laminated composites that would provide enhanced mechanical and thermal properties along transverse direction. CF sheets allowed the buckling of adjoining plies in 2D MLCP. We fabricated 2D MLCP by stacking the alternative CF and HDPE layers under different loading conditions, which resulted in high strength composites. These plies of CF and HDPE served as unit cells for MLCP, with CF offering much-needed fracture toughness and hardness to these materials.For 2D HDPE/CF MLCP, we demonstrated noteworthy improvement in physical and chemical interaction between CF and HDPE, in-plane fracture strain, flexural strength(30.684 MPa), bending modulus(7436.254 MPa), thermal stability(40.94%), and surface morphology, upon increasing the CF layers up to twenty, enabling these composites truly for high temperature and high strength applications.展开更多
文摘Desalination is considered a viable method to overcome the issue of water scarcity either from waste water or seawater. For this purpose, this study employed a facile approach to develop surface immobilized oxidized-MWCNTs(o-MWCNTs) onto crosslinked polyvinyl alcohol(PVA) membrane. Firstly, modified polysulphone substrate was synthesized on to which crosslinked PVA layer was spread onto it. PVA layer act as active layer for surface immobilization of o-MWCNTs in varying concentration. The functional group analysis, morphology and roughness of membranes surface was conducted out using FTIR, SEM and AFM respectively. The results showed that modified membranes, immobilized o-MWCNTs enhanced the salt rejection(Na_(2)SO_(4)) upto 99.8%. After contacting with Escherichia coli and Staphylococcus aureus for 2.5 h the bacteria mortalities of the fabricated membrane could reach 96.9%. Furthermore, the antibiofouling tests showed that OP-MWCNTs(1-5) modified membranes have higher anti-biofouling property than the control membrane.
文摘Carbon fiber reinforced high density polyethylene multi-layered laminated composite panels(HDPE/CF MLCP) with excellent in-plane properties along transverse direction have been formulated. Composite architectures with carbon fiber(CF) designed in 2D layout in conventional composites can alleviate their properties in thickness direction, but all attempts so far developed have achieved restrained success. Here,we have exposed an approach to the high strength composite challenge, without altering the 2D stack design on the basis of concept of fiber reinforced laminated composites that would provide enhanced mechanical and thermal properties along transverse direction. CF sheets allowed the buckling of adjoining plies in 2D MLCP. We fabricated 2D MLCP by stacking the alternative CF and HDPE layers under different loading conditions, which resulted in high strength composites. These plies of CF and HDPE served as unit cells for MLCP, with CF offering much-needed fracture toughness and hardness to these materials.For 2D HDPE/CF MLCP, we demonstrated noteworthy improvement in physical and chemical interaction between CF and HDPE, in-plane fracture strain, flexural strength(30.684 MPa), bending modulus(7436.254 MPa), thermal stability(40.94%), and surface morphology, upon increasing the CF layers up to twenty, enabling these composites truly for high temperature and high strength applications.