期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Driving the sodium-oxygen battery chemistry towards the efficient formation of discharge products: The importance of sodium superoxide quantification
1
作者 Marina Enterría Marine Reynaud +3 位作者 Juan Ignacio Paredes Lidia Medinilla Reza Younesi nagore ortiz-vitoriano 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期709-720,共12页
Sodium-oxygen batteries(SOBs) have the potential to provide energy densities higher than the state-ofthe-art Li-ion batteries. However, controlling the formation of sodium superoxide(NaO_(2)) as the sole discharge pro... Sodium-oxygen batteries(SOBs) have the potential to provide energy densities higher than the state-ofthe-art Li-ion batteries. However, controlling the formation of sodium superoxide(NaO_(2)) as the sole discharge product on the cathode side is crucial to achieve durable and efficient SOBs. In this work, the discharge efficiency of two graphene-based cathodes was evaluated and compared with that of a commercial gas diffusion layer. The discharge products formed at the surface of these cathodes in a glyme-based electrolyte were carefully studied using a range of characterization techniques. NaO_(2) was detected as the main discharge product regardless of the specific cathode material while small amounts of Na_(2)O_(2).2H_(2)O and carbonate-like side-products were detected by X-ray diffraction as well as by Raman and infrared spectroscopies. This work leverages the use of X-ray diffraction to determine the actual yield of NaO_(2)which is usually overlooked in this type of batteries. Thus, the proper quantification of the superoxide formed on the cathode surface is widely underestimated;even though is crucial for determining the efficiency of the battery while eliminating the parasitic chemistry in SOBs. Here, we develop an ex-situ analysis method to determine the amount of NaO_(2) generated upon discharge in SOBs by transmission X-ray diffraction and quantitative Rietveld analysis. This work unveils that the yield of NaO_(2) depends on the depth of discharge where high capacities lead to very low discharge efficiency, regardless of the used cathode. We anticipate that the methodology developed herein will provide a convenient diagnosis tool in future efforts to optimize the performance of the different cell components in SOBs. 展开更多
关键词 Na-O_(2)batteries Graphene Transmission X-Ray diffraction Rietveld refinement Na-O_(2)quantification Parasitic chemistry Cathode design
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部