Ti O2 nanowire(NW) is one of the potential scattering layer materials in dye-sensitized solar cells(DSSCs) owing to its fast electron conductivity and excellent light scattering property resulting from its one-dimensi...Ti O2 nanowire(NW) is one of the potential scattering layer materials in dye-sensitized solar cells(DSSCs) owing to its fast electron conductivity and excellent light scattering property resulting from its one-dimensional(1D) morphology. However, Ti O2 NWs used as scattering layers in previous work were either aggregated or shortened into shuttles that cannot use their unique 1D properties. In this paper, we present the preparation of a well-dispersed long NW paste(exceeding 1 ?m) by a mild method and used as a scattering layer in DSSC. The paste achieved a photoconversion efficiency of 5.73% and an efficiency enhancement of 12% compared with commercial scattering layer(P200 paste). Compared with the DSSC without a scattering layer, an efficiency enhancement of 54.9% was achieved. Also, the largest efficiency of 6.89% was obtained after optimization of photoanode thickness. The photoanodes were investigated through dye desorbed experiments and transmission spectra, which suggested that P25 nanoparticles with the as-prepared NW scattering layer loaded more dye than those with P200 paste. These results indicate that well-dispersed long NW paste has a potential application in scattering layers.展开更多
基金supported by the National Basic Research Program of China(2011CB933002,2012CB932702)the National Natural Science Foundation of China(61306079,60871002)
文摘Ti O2 nanowire(NW) is one of the potential scattering layer materials in dye-sensitized solar cells(DSSCs) owing to its fast electron conductivity and excellent light scattering property resulting from its one-dimensional(1D) morphology. However, Ti O2 NWs used as scattering layers in previous work were either aggregated or shortened into shuttles that cannot use their unique 1D properties. In this paper, we present the preparation of a well-dispersed long NW paste(exceeding 1 ?m) by a mild method and used as a scattering layer in DSSC. The paste achieved a photoconversion efficiency of 5.73% and an efficiency enhancement of 12% compared with commercial scattering layer(P200 paste). Compared with the DSSC without a scattering layer, an efficiency enhancement of 54.9% was achieved. Also, the largest efficiency of 6.89% was obtained after optimization of photoanode thickness. The photoanodes were investigated through dye desorbed experiments and transmission spectra, which suggested that P25 nanoparticles with the as-prepared NW scattering layer loaded more dye than those with P200 paste. These results indicate that well-dispersed long NW paste has a potential application in scattering layers.