As well known in the petroleum industry and academia,Ni/ZnO catalysts have excellent desulfurization performance.However,the sulfur transfer mechanism of reactive adsorption desulfurization(RADS)that occurs on Ni/ZnO ...As well known in the petroleum industry and academia,Ni/ZnO catalysts have excellent desulfurization performance.However,the sulfur transfer mechanism of reactive adsorption desulfurization(RADS)that occurs on Ni/ZnO catalysts remains controversial.Herein,a periodic Ni nanorod supported on ZnO slab was built to represent the Ni/ZnO system,and density functional theory calculations were performed to study the sulfur transfer process and the role of H_(2)within the process.The results elucidate that the direct solid-state diffusion of S from Ni to interfacial oxygen vacancies(Ov)is more favorable than the hydrogenation of S to SH/H_(2)S on Ni and the subsequent H_(2)S desorption,and accordingly,H_(2)O is produced on Ni rather than on ZnO.Ab initio thermodynamics analysis shows that the hydrogen atmosphere applied in preparing Ni/ZnO catalysts greatly promotes the O_(v)formation on ZnO surface,which accounts for the presence of interfacial O_(v)in freshly prepared catalysts.Under RADS condition,hydrogenation of interfacial O atoms to form O-H groups facilitates the reverse spillover of these lattice O atoms from ZnO to Ni,accompanied with the interfacial O_(v)generation.In contrast to the classic S transfer mechanism via H_(2)S,the present work clearly demonstrates that the interfacial S transfer is a feasible reaction pathway in the RADS mechanism.More importantly,the existence of interfacial O_(v)is an essential prerequisite for this interfacial S diffusion,and H_(2)plays a key role in facilitating the O_(v)formation.展开更多
基金supported by the National Natural Science Foundation of China(22178388,21776315)the Taishan Scholars Program of Shandong Province(tsqn201909065)the Fundamental Research Funds for the Central Universities(19CX05001A).
文摘As well known in the petroleum industry and academia,Ni/ZnO catalysts have excellent desulfurization performance.However,the sulfur transfer mechanism of reactive adsorption desulfurization(RADS)that occurs on Ni/ZnO catalysts remains controversial.Herein,a periodic Ni nanorod supported on ZnO slab was built to represent the Ni/ZnO system,and density functional theory calculations were performed to study the sulfur transfer process and the role of H_(2)within the process.The results elucidate that the direct solid-state diffusion of S from Ni to interfacial oxygen vacancies(Ov)is more favorable than the hydrogenation of S to SH/H_(2)S on Ni and the subsequent H_(2)S desorption,and accordingly,H_(2)O is produced on Ni rather than on ZnO.Ab initio thermodynamics analysis shows that the hydrogen atmosphere applied in preparing Ni/ZnO catalysts greatly promotes the O_(v)formation on ZnO surface,which accounts for the presence of interfacial O_(v)in freshly prepared catalysts.Under RADS condition,hydrogenation of interfacial O atoms to form O-H groups facilitates the reverse spillover of these lattice O atoms from ZnO to Ni,accompanied with the interfacial O_(v)generation.In contrast to the classic S transfer mechanism via H_(2)S,the present work clearly demonstrates that the interfacial S transfer is a feasible reaction pathway in the RADS mechanism.More importantly,the existence of interfacial O_(v)is an essential prerequisite for this interfacial S diffusion,and H_(2)plays a key role in facilitating the O_(v)formation.