The aim of this work was to investigate by X-ray photoelectron spectroscopy the effect of high pressure on the chemical environments of Si 2p, O 1s and Li 1s in lithium disilicate glass ceramic with stoichiometric com...The aim of this work was to investigate by X-ray photoelectron spectroscopy the effect of high pressure on the chemical environments of Si 2p, O 1s and Li 1s in lithium disilicate glass ceramic with stoichiometric composition Li2O·2SiO2 (LS2). A group of samples was processed at 2.5 GPa, 4 GPa and 7.7 GPa at room temperature and a second group was crystallized under high pressure and high temperature. Large shifts of the binding energy toward higher energies were observed in the X-ray photoelectron spectroscopy spectra for samples of the first group after densification at 2.5 and 4 GPa. For samples processed at 7.7 Gpa, the major component of the binding energy for the Si 2p environment remained practically unchanged compared to the pristine sample but new components, with smaller intensities, appeared in the spectra, indicating the existence of distinct Q-species induced by high pressure. This behavior may be related to changes in the number of bridged and non-bridged oxygen atoms in the glass structure. The results for the second group of samples, crystallized under high pressure, showed evidences of three binding energies for the O atoms, one of them related to non-bridged and two of them to bridged O atoms.展开更多
文摘The aim of this work was to investigate by X-ray photoelectron spectroscopy the effect of high pressure on the chemical environments of Si 2p, O 1s and Li 1s in lithium disilicate glass ceramic with stoichiometric composition Li2O·2SiO2 (LS2). A group of samples was processed at 2.5 GPa, 4 GPa and 7.7 GPa at room temperature and a second group was crystallized under high pressure and high temperature. Large shifts of the binding energy toward higher energies were observed in the X-ray photoelectron spectroscopy spectra for samples of the first group after densification at 2.5 and 4 GPa. For samples processed at 7.7 Gpa, the major component of the binding energy for the Si 2p environment remained practically unchanged compared to the pristine sample but new components, with smaller intensities, appeared in the spectra, indicating the existence of distinct Q-species induced by high pressure. This behavior may be related to changes in the number of bridged and non-bridged oxygen atoms in the glass structure. The results for the second group of samples, crystallized under high pressure, showed evidences of three binding energies for the O atoms, one of them related to non-bridged and two of them to bridged O atoms.