期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Simulation of hydrogen distribution and effect of Engineering Safety Features (ESFs) on its mitigation in a WWER-1000 containment 被引量:5
1
作者 Omid Noori-kalkhoran najmeh jafari-ouregani +1 位作者 Massimiliano Gei Rohollah Ahangari 《Nuclear Science and Techniques》 SCIE CAS CSCD 2019年第6期88-103,共16页
In this study, thermal–hydraulic parameters inside the containment of aWWER-1000/v446 nuclear power plant are simulated in a double-ended cold leg accident for short and long times (by using CONTAIN 2.0 and MELCOR 1.... In this study, thermal–hydraulic parameters inside the containment of aWWER-1000/v446 nuclear power plant are simulated in a double-ended cold leg accident for short and long times (by using CONTAIN 2.0 and MELCOR 1.8.6 codes), and the effect of the spray system as an engineering safety feature on parameters mitigation is analyzed with the former code. Along with the development of the accident from design basis accident to beyond design basis accident, the Zircaloy–steam reaction becomes the source of in-vessel hydrogen generation. Hydrogen distribution inside the containment is simulated for a long time (using CONTAIN and MELCOR), and the effect of recombiners on its mitigation is analyzed (using MELCOR). Thermal–hydraulic parameters and hydrogen distribution profiles are presented as the outcome of the investigation. By activating the spray system, the peak points of pressure and temperature occur in the short time and remain belowthe maximumdesign values along the accident time. It is also shown that recombiners have a reliable effect on reducing the hydrogen concentration below flame propagation limit in the accident localization area. The parameters predicted by CONTAIN and MELCOR are in good agreement with the final safety analysis report. The noted discrepancies are discussed and explained. 展开更多
关键词 CONTAINMENT Hydrogen distribution Invessel severe accident Recombiners CONTAIN MELCOR
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部