Urban buildings and urban traffic network are considered as the vital arteries of cities which have particular effects especially after the crisis in the search and rescue operations. The aim of this study is to deter...Urban buildings and urban traffic network are considered as the vital arteries of cities which have particular effects especially after the crisis in the search and rescue operations. The aim of this study is to determine the vulnerability of urban areas especially, buildings and traffic networks using multicriteria geographic information systems and decisionmaking methods. As there are many effective criteria on the seismic vulnerability that they have uncertain and vague properties, the method of this paper is applying fuzzy ordered weighted average(OWA) to model the seismic vulnerability of urban buildings and traffic networks in the most optimistic and pessimistic states. The study area is district 6 of Tehran that is affected by the four major faults, and thus will be threatened by the earthquakes. The achieved results illustrated the vulnerability with different degrees of risk levels including very high, high, medium, low and very low. The results show that in the most optimistic case 14% and in the pessimistic case 1% of buildings tolerate in very low vulnerability. The vulnerability of urban street network also indicates that in the optimistic case 12% and in the pessimistic case at most 9% of the area are in appropriate condition and the North and NorthEast of the study area are more vulnerable than South of it.展开更多
Seismic vulnerability assessment of urban buildings is among the most crucial procedures to post-disaster response and recovery of infrastructure systems.The present study proceeds to estimate the seismic vulnerabilit...Seismic vulnerability assessment of urban buildings is among the most crucial procedures to post-disaster response and recovery of infrastructure systems.The present study proceeds to estimate the seismic vulnerability of urban buildings and proposes a new framework training on the two objectives.First,a comprehensive interpretation of the effective parameters of this phenomenon including physical and human factors is done.Second,the Rough Set theory is used to reduce the integration uncertainties,as there are numerous quantitative and qualitative data.Both objectives were conducted on seven distinct earthquake scenarios with different intensities based on distance from the fault line and the epicenter.The proposed method was implemented by measuring seismic vulnerability for the seven specified seismic scenarios.The final results indicated that among the entire studied buildings,71.5%were highly vulnerable as concerning the highest earthquake scenario(intensity=7 MM and acceleration calculated based on the epicenter),while in the lowest earthquake scenario(intensity=5 MM),the percentage of vulnerable buildings decreased to approximately 57%.Also,the findings proved that the distance from the fault line rather than the earthquake center(epicenter)has a significant effect on the seismic vulnerability of urban buildings.The model was evaluated by comparing the results with the weighted linear combination(WLC)method.The accuracy of the proposed model was substantiated according to evaluation reports.Vulnerability assessment based on the distance from the epicenter and its comparison with the distance from the fault shows significant reliable results.展开更多
文摘Urban buildings and urban traffic network are considered as the vital arteries of cities which have particular effects especially after the crisis in the search and rescue operations. The aim of this study is to determine the vulnerability of urban areas especially, buildings and traffic networks using multicriteria geographic information systems and decisionmaking methods. As there are many effective criteria on the seismic vulnerability that they have uncertain and vague properties, the method of this paper is applying fuzzy ordered weighted average(OWA) to model the seismic vulnerability of urban buildings and traffic networks in the most optimistic and pessimistic states. The study area is district 6 of Tehran that is affected by the four major faults, and thus will be threatened by the earthquakes. The achieved results illustrated the vulnerability with different degrees of risk levels including very high, high, medium, low and very low. The results show that in the most optimistic case 14% and in the pessimistic case 1% of buildings tolerate in very low vulnerability. The vulnerability of urban street network also indicates that in the optimistic case 12% and in the pessimistic case at most 9% of the area are in appropriate condition and the North and NorthEast of the study area are more vulnerable than South of it.
文摘Seismic vulnerability assessment of urban buildings is among the most crucial procedures to post-disaster response and recovery of infrastructure systems.The present study proceeds to estimate the seismic vulnerability of urban buildings and proposes a new framework training on the two objectives.First,a comprehensive interpretation of the effective parameters of this phenomenon including physical and human factors is done.Second,the Rough Set theory is used to reduce the integration uncertainties,as there are numerous quantitative and qualitative data.Both objectives were conducted on seven distinct earthquake scenarios with different intensities based on distance from the fault line and the epicenter.The proposed method was implemented by measuring seismic vulnerability for the seven specified seismic scenarios.The final results indicated that among the entire studied buildings,71.5%were highly vulnerable as concerning the highest earthquake scenario(intensity=7 MM and acceleration calculated based on the epicenter),while in the lowest earthquake scenario(intensity=5 MM),the percentage of vulnerable buildings decreased to approximately 57%.Also,the findings proved that the distance from the fault line rather than the earthquake center(epicenter)has a significant effect on the seismic vulnerability of urban buildings.The model was evaluated by comparing the results with the weighted linear combination(WLC)method.The accuracy of the proposed model was substantiated according to evaluation reports.Vulnerability assessment based on the distance from the epicenter and its comparison with the distance from the fault shows significant reliable results.