Aim: To investigate the role of CAG and GGN repeats as genetic background affecting androgen insensitivity syndrome (AIS) phenotype. Methods: We analyzed lengths of androgen receptor (AR)-CAG and GGN repeats in ...Aim: To investigate the role of CAG and GGN repeats as genetic background affecting androgen insensitivity syndrome (AIS) phenotype. Methods: We analyzed lengths of androgen receptor (AR)-CAG and GGN repeats in 69 AIS cases, along with 136 unrelated normal male individuals. The lengths of repeats were analyzed using polymerase chain reaction (PCR) amplification followed by allelic genotyping to determine allele length. Results: Our study revealed significantly shorter mean lengths of CAG repeats in patients (mean 18.25 repeats, range 14-26 repeats) in comparison to the controls (mean 22.57 repeats, range 12-39 repeats) (two-tailed P 〈 0.0001). GGN repeats, however, did not differ significantly between patients (mean 21.48 repeats) and controls (mean 21.21 repeats) (two- tailed P = 0.474). Among patients' groups, the mean number of CAG repeats in partial androgen insensitivity cases (mean 15.83 repeats) was significantly less than in complete androgen insensitivity cases (mean 19.46 repeats) (two- tailed P 〈 0.0001). Conclusion: The findings suggest that shorter lengths of repeats in the AR gene might act as low penetrance genetic background in varying manifestation of androgen insensitivity.展开更多
文摘Aim: To investigate the role of CAG and GGN repeats as genetic background affecting androgen insensitivity syndrome (AIS) phenotype. Methods: We analyzed lengths of androgen receptor (AR)-CAG and GGN repeats in 69 AIS cases, along with 136 unrelated normal male individuals. The lengths of repeats were analyzed using polymerase chain reaction (PCR) amplification followed by allelic genotyping to determine allele length. Results: Our study revealed significantly shorter mean lengths of CAG repeats in patients (mean 18.25 repeats, range 14-26 repeats) in comparison to the controls (mean 22.57 repeats, range 12-39 repeats) (two-tailed P 〈 0.0001). GGN repeats, however, did not differ significantly between patients (mean 21.48 repeats) and controls (mean 21.21 repeats) (two- tailed P = 0.474). Among patients' groups, the mean number of CAG repeats in partial androgen insensitivity cases (mean 15.83 repeats) was significantly less than in complete androgen insensitivity cases (mean 19.46 repeats) (two- tailed P 〈 0.0001). Conclusion: The findings suggest that shorter lengths of repeats in the AR gene might act as low penetrance genetic background in varying manifestation of androgen insensitivity.