We conducted a comprehensive study to investigate the aerodynamic characteristics and force generation of the elytra of abeetle,Allomyrina dichotoma.Our analysis included wind tunnel experiments and three-dimensional ...We conducted a comprehensive study to investigate the aerodynamic characteristics and force generation of the elytra of abeetle,Allomyrina dichotoma.Our analysis included wind tunnel experiments and three-dimensional computational fluiddynamics simulations using ANSYS-CFX software.Our first approach was a quasi-static study that considered the effect ofinduced flapping flow due to the flapping motion of the fore-wings (elytra) at a frequency of around 30 Hz to 40 Hz.The dihedralangle was varied to represent flapping motion during the upstroke and downstroke.We found that an elytron producespositive lift at 0° geometric angle of attack,negative lift during the upstroke,and always produces drag during both the upstrokeand downstroke.We also found that the lift coefficient of an elytron does not drop even at a very high geometric angle of attack.For a beetle with a body weight of 5 g,based on the quasi-static method,the fore-wings (elytra) can produce lift of less than 1%of its body weight.展开更多
This paper addresses the design of a biomimetic fish robot actuated by piezoeeramic actuators and the effect of artificial caudal fins on the fish robot's performance. The limited bending displacement produced by a l...This paper addresses the design of a biomimetic fish robot actuated by piezoeeramic actuators and the effect of artificial caudal fins on the fish robot's performance. The limited bending displacement produced by a lightweight piezocomposite actuator was amplified and transformed into a large tail beat motion by means of a linkage system. Caudal fins that mimic the shape of a mackerel fin were fabricated for the purpose of examining the effect of caudal fm characteristics on thrust production at an operating frequency range. The thickness distribution of a real mackerel's fin was measured and used to design artificial caudal fins. The thrust performance of the biomimetic fish robot propelled by fins of various thicknesses was examined in terms of the Strouhal number, the Froude number, the Reynolds number, and the power consumption. For the same fm area and aspect ratio, an artificial caudal fin with a distributed thickness shows the best forward speed and the least power consumption.展开更多
In an attempt to realize a flapping wing micro-air vehicle with morphing wings, we report on improvements to our previousfoldable artificial hind wing.Multiple hinges, which were implemented to mimic the bending zone ...In an attempt to realize a flapping wing micro-air vehicle with morphing wings, we report on improvements to our previousfoldable artificial hind wing.Multiple hinges, which were implemented to mimic the bending zone of a beetle hind wing, weremade of small composite hinge plates and tiny aluminum rivets.The buck-tails of rivets were flared after the hinge plates wereassembled with the rivets so that the folding/unfolding motions could be completed in less time, and the straight shape of theartificial hind wing could be maintained after fabrication.Folding and unfolding actions were triggered by electrically-activatedShape Memory Alloy (SMA) wires.For wing folding, the actuation characteristics of the SMA wire actuator were modifiedthrough heat treatment.Through a series of flapping tests, we confirmed that the artificial wings did not fold back and arbitrarilyfluctuate during the flapping motion.展开更多
We have studied a biomimetic swimmer based on the motion of bacteria such as Escherichia coli (E. coli) theoretically andexperimentally. The swimmer has an ellipsoidal cell body propelled by a helical filament. The pe...We have studied a biomimetic swimmer based on the motion of bacteria such as Escherichia coli (E. coli) theoretically andexperimentally. The swimmer has an ellipsoidal cell body propelled by a helical filament. The performance of this swimmer wasestimated by modeling the dynamics of a swimmer in viscous fluid. We applied the Resistive Force Theory (RFT) on this modelto calculate the linear swimming speed and the efficiency of the model. A parametric study on linear velocity and efficiency tooptimize the design of this swimmer was demonstrated. In order to validate the theoretical results, a biomimetic swimmer wasfabricated and an experiment setup was prepared to measure the swimming speed and thrust force in silicone oil. The experimentalresults agree well with the theoretical values predicted by RFT. In addition, we studied the flow patterns surrounding thefilament with a finite element simulation with different Reynolds number (Re) to understand the mechanism of propulsion. Thesimulation results provide information on the nature of flow patterns generated by swimming filament. Furthermore, the thrustforces from the simulation were compared with the thrust forces from theory. The simulation results are in good agreement withthe theoretical results.展开更多
Beetle wings are very specialized flight organs consisting of the veins and membranes.Therefore it is necessary from a bionic view to investigate the material properties of a beetle wing experimentally.In the present ...Beetle wings are very specialized flight organs consisting of the veins and membranes.Therefore it is necessary from a bionic view to investigate the material properties of a beetle wing experimentally.In the present study,we have used a Digital Image Correlation (DIC) technique to measure the elastic modulus of a beetle wing membrane.Specimens were prepared by carefully cutting a beetle hind wing into 3.0 mm by 7.0 mm segments (the gage length was 5 mm).We used a scanning electron microscope for a precise measurement of the thickness of the beetle wing membrane.The specimen was attached to a designed fixture to induce a uniform displacement by means of a micromanipulator.We used an ARAMISTM system based on the digital image correlation technique to measure the corresponding displacement of a specimen.The thickness of the beetle wing varied at different points of the membrane.The elastic modulus differed in relation to the membrane arrangement showing a structural anisotropy;the elastic modulus in the chordwise direction is approximately 2.65 GPa,which is three times larger than the elastic modulus in the spanwise direction of 0.84 GPa.As a result,the digital image correlation-based ARAMIS system was suc- cessfully used to measure the elastic modulus of a beetle wing.In addition to membrane's elastic modulus,we considered the Poisson's ratio of the membrane and measured the elastic modulus of a vein using an Instron universal tensile machine.The result reveals the Poisson's ratio is nearly zero and the elastic modulus of a vein is about 11 GPa.展开更多
This paper presents the design, fabrication, and experimental characterization of a peristaltic micropump. The micropump is composed of two layers fabricated from Polydimethylsiloxane (PDMS) material. The first laye...This paper presents the design, fabrication, and experimental characterization of a peristaltic micropump. The micropump is composed of two layers fabricated from Polydimethylsiloxane (PDMS) material. The first layer has a rectangular channel and two valve seals. Three rectangular mini lightweight piezo-composite actuators are integrated in the second layer, and used as actuation parts. Two layers are bonded, and covered by two Polymethyl Methacrylate (PMMA) plates, which help increase the stiffness of the micropump. A maximum flow rate of 900μL.min 1 and a maximum backpressure of 1.8 kPa are recorded when water is used as pump liquid. We measured the power consumption of the micropump. The micropump is found to be a promising candidate for bio-medical application due to its bio-compatibility, portability, bidirectionality, and simple effective design.展开更多
The piezoelectric effect is used in sensing applications such as in force and displacement sensors.However,the brittleness and low performance of piezoceramic lead zirconate titanate(PZT) often impede its applicabilit...The piezoelectric effect is used in sensing applications such as in force and displacement sensors.However,the brittleness and low performance of piezoceramic lead zirconate titanate(PZT) often impede its applicability in civil structures which are subjected to large loads.The concept of a piezocomposite electricity generating element(PCGE) has been proposed for improving the electricity generation performance and overcoming the brittleness of piezoceramic wafers.The post-curing residual stress in the PZT layer constitutes a main reason for the PCGE's enhanced performance,and the outer epoxy-based composites protect the brittle PZT layer.A d33-mode PCGE designed for bridge monitoring application was inserted in a bridge bearing to provide a permanent and simple weigh-in-motion system.The designed PCGEs were tested through a series of tests including fatigue and dynamic tests to verify their applicability for monitoring purposes in a bridge structure.A simple beam example was presented to show the applicability of the proposed bridge bearing equipped with the PCGE for adequately measuring the traffic loads.展开更多
We briefly summarized how to design and fabricate an insect-mimicking flapping-wing system and demonstrate how to implement inherent pitching stability for stable vertical takeoff. The effect of relative locations of ...We briefly summarized how to design and fabricate an insect-mimicking flapping-wing system and demonstrate how to implement inherent pitching stability for stable vertical takeoff. The effect of relative locations of the Center of Gravity (CG) and the mean Aerodynamic Center (AC) on vertical flight was theoretically examined through static force balance considera- tion. We conducted a series of vertical takeoff tests in which the location of the mean AC was determined using an unsteady Blade Element Theory (BET) previously developed by the authors. Sequential images were captured during the takeoff tests using a high-speed camera. The results demonstrated that inherent pitching stability for vertical takeoff can be achieved by controlling the relative position between the CG and the mean AC of the flapping system.展开更多
In this study, the punch resistance of the beetle forewing was investigated to address the ability of the forewing against the external force. The punch resistance of the forewing was measured for different sizes and ...In this study, the punch resistance of the beetle forewing was investigated to address the ability of the forewing against the external force. The punch resistance of the forewing was measured for different sizes and sexes of beetles using a conventional testing method in conjunction with the Digital Image Correlation (DIC) technique. The results showed that the maximum fracture load was measured around 23 N for the female beetle and around 20.2 N for the male beetle in the front-side punch test. Moreover, the fracture load in the front-side punch test was higher than that in the back-side punch test for both male and female beetles. This means that the beetle forewing plays a protection role against external loads. Furthermore, the puncture energy in the front-side punch test for the female beetle (6.91 m J) was a little higher than that for the male beetle (5.27 mJ). In addition, the DIC results revealed that the first crack occurred along the trachea line and the second crack then appeared in the direction that was perpendicular to the direction of the first crack. This study provides a com- prehensive understanding of the mechanical protection properties of the beetle forewing and offers a good lesson for studying lightweight bio-inspired composite material.展开更多
基金supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF)funded by the Ministry of Education,Science and Technology of the Korean government (Grant No.2010-0018884)
文摘We conducted a comprehensive study to investigate the aerodynamic characteristics and force generation of the elytra of abeetle,Allomyrina dichotoma.Our analysis included wind tunnel experiments and three-dimensional computational fluiddynamics simulations using ANSYS-CFX software.Our first approach was a quasi-static study that considered the effect ofinduced flapping flow due to the flapping motion of the fore-wings (elytra) at a frequency of around 30 Hz to 40 Hz.The dihedralangle was varied to represent flapping motion during the upstroke and downstroke.We found that an elytron producespositive lift at 0° geometric angle of attack,negative lift during the upstroke,and always produces drag during both the upstrokeand downstroke.We also found that the lift coefficient of an elytron does not drop even at a very high geometric angle of attack.For a beetle with a body weight of 5 g,based on the quasi-static method,the fore-wings (elytra) can produce lift of less than 1%of its body weight.
文摘This paper addresses the design of a biomimetic fish robot actuated by piezoeeramic actuators and the effect of artificial caudal fins on the fish robot's performance. The limited bending displacement produced by a lightweight piezocomposite actuator was amplified and transformed into a large tail beat motion by means of a linkage system. Caudal fins that mimic the shape of a mackerel fin were fabricated for the purpose of examining the effect of caudal fm characteristics on thrust production at an operating frequency range. The thickness distribution of a real mackerel's fin was measured and used to design artificial caudal fins. The thrust performance of the biomimetic fish robot propelled by fins of various thicknesses was examined in terms of the Strouhal number, the Froude number, the Reynolds number, and the power consumption. For the same fm area and aspect ratio, an artificial caudal fin with a distributed thickness shows the best forward speed and the least power consumption.
基金supported by the Korea Science and Engineering Foundation Grant(National Research Laboratory Program,R0A-2007-000-200012-0)the Korea Research Foundation(KRF-006-005-J03301)partially supported by the 2009 KU Brain Pool of Konkuk University
文摘In an attempt to realize a flapping wing micro-air vehicle with morphing wings, we report on improvements to our previousfoldable artificial hind wing.Multiple hinges, which were implemented to mimic the bending zone of a beetle hind wing, weremade of small composite hinge plates and tiny aluminum rivets.The buck-tails of rivets were flared after the hinge plates wereassembled with the rivets so that the folding/unfolding motions could be completed in less time, and the straight shape of theartificial hind wing could be maintained after fabrication.Folding and unfolding actions were triggered by electrically-activatedShape Memory Alloy (SMA) wires.For wing folding, the actuation characteristics of the SMA wire actuator were modifiedthrough heat treatment.Through a series of flapping tests, we confirmed that the artificial wings did not fold back and arbitrarilyfluctuate during the flapping motion.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education Science and Technology(Grant number:2010-0018884)
文摘We have studied a biomimetic swimmer based on the motion of bacteria such as Escherichia coli (E. coli) theoretically andexperimentally. The swimmer has an ellipsoidal cell body propelled by a helical filament. The performance of this swimmer wasestimated by modeling the dynamics of a swimmer in viscous fluid. We applied the Resistive Force Theory (RFT) on this modelto calculate the linear swimming speed and the efficiency of the model. A parametric study on linear velocity and efficiency tooptimize the design of this swimmer was demonstrated. In order to validate the theoretical results, a biomimetic swimmer wasfabricated and an experiment setup was prepared to measure the swimming speed and thrust force in silicone oil. The experimentalresults agree well with the theoretical values predicted by RFT. In addition, we studied the flow patterns surrounding thefilament with a finite element simulation with different Reynolds number (Re) to understand the mechanism of propulsion. Thesimulation results provide information on the nature of flow patterns generated by swimming filament. Furthermore, the thrustforces from the simulation were compared with the thrust forces from theory. The simulation results are in good agreement withthe theoretical results.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF)the Ministry of Education, Science and Technology (Grant number: 2009-0083068)
文摘Beetle wings are very specialized flight organs consisting of the veins and membranes.Therefore it is necessary from a bionic view to investigate the material properties of a beetle wing experimentally.In the present study,we have used a Digital Image Correlation (DIC) technique to measure the elastic modulus of a beetle wing membrane.Specimens were prepared by carefully cutting a beetle hind wing into 3.0 mm by 7.0 mm segments (the gage length was 5 mm).We used a scanning electron microscope for a precise measurement of the thickness of the beetle wing membrane.The specimen was attached to a designed fixture to induce a uniform displacement by means of a micromanipulator.We used an ARAMISTM system based on the digital image correlation technique to measure the corresponding displacement of a specimen.The thickness of the beetle wing varied at different points of the membrane.The elastic modulus differed in relation to the membrane arrangement showing a structural anisotropy;the elastic modulus in the chordwise direction is approximately 2.65 GPa,which is three times larger than the elastic modulus in the spanwise direction of 0.84 GPa.As a result,the digital image correlation-based ARAMIS system was suc- cessfully used to measure the elastic modulus of a beetle wing.In addition to membrane's elastic modulus,we considered the Poisson's ratio of the membrane and measured the elastic modulus of a vein using an Instron universal tensile machine.The result reveals the Poisson's ratio is nearly zero and the elastic modulus of a vein is about 11 GPa.
文摘This paper presents the design, fabrication, and experimental characterization of a peristaltic micropump. The micropump is composed of two layers fabricated from Polydimethylsiloxane (PDMS) material. The first layer has a rectangular channel and two valve seals. Three rectangular mini lightweight piezo-composite actuators are integrated in the second layer, and used as actuation parts. Two layers are bonded, and covered by two Polymethyl Methacrylate (PMMA) plates, which help increase the stiffness of the micropump. A maximum flow rate of 900μL.min 1 and a maximum backpressure of 1.8 kPa are recorded when water is used as pump liquid. We measured the power consumption of the micropump. The micropump is found to be a promising candidate for bio-medical application due to its bio-compatibility, portability, bidirectionality, and simple effective design.
基金Project supported by Konkuk University,Korea,in 2014
文摘The piezoelectric effect is used in sensing applications such as in force and displacement sensors.However,the brittleness and low performance of piezoceramic lead zirconate titanate(PZT) often impede its applicability in civil structures which are subjected to large loads.The concept of a piezocomposite electricity generating element(PCGE) has been proposed for improving the electricity generation performance and overcoming the brittleness of piezoceramic wafers.The post-curing residual stress in the PZT layer constitutes a main reason for the PCGE's enhanced performance,and the outer epoxy-based composites protect the brittle PZT layer.A d33-mode PCGE designed for bridge monitoring application was inserted in a bridge bearing to provide a permanent and simple weigh-in-motion system.The designed PCGEs were tested through a series of tests including fatigue and dynamic tests to verify their applicability for monitoring purposes in a bridge structure.A simple beam example was presented to show the applicability of the proposed bridge bearing equipped with the PCGE for adequately measuring the traffic loads.
基金Basic Science Research Program through the National Research Foundation of Korea (NRF),The Ministry of Education,Science and Technology,The New & Renewable Energy R&D program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP),The Korea government Ministry of Knowledge Economy,M.J.Kim appreciates the financial support from National Science Foundation
文摘We briefly summarized how to design and fabricate an insect-mimicking flapping-wing system and demonstrate how to implement inherent pitching stability for stable vertical takeoff. The effect of relative locations of the Center of Gravity (CG) and the mean Aerodynamic Center (AC) on vertical flight was theoretically examined through static force balance considera- tion. We conducted a series of vertical takeoff tests in which the location of the mean AC was determined using an unsteady Blade Element Theory (BET) previously developed by the authors. Sequential images were captured during the takeoff tests using a high-speed camera. The results demonstrated that inherent pitching stability for vertical takeoff can be achieved by controlling the relative position between the CG and the mean AC of the flapping system.
文摘In this study, the punch resistance of the beetle forewing was investigated to address the ability of the forewing against the external force. The punch resistance of the forewing was measured for different sizes and sexes of beetles using a conventional testing method in conjunction with the Digital Image Correlation (DIC) technique. The results showed that the maximum fracture load was measured around 23 N for the female beetle and around 20.2 N for the male beetle in the front-side punch test. Moreover, the fracture load in the front-side punch test was higher than that in the back-side punch test for both male and female beetles. This means that the beetle forewing plays a protection role against external loads. Furthermore, the puncture energy in the front-side punch test for the female beetle (6.91 m J) was a little higher than that for the male beetle (5.27 mJ). In addition, the DIC results revealed that the first crack occurred along the trachea line and the second crack then appeared in the direction that was perpendicular to the direction of the first crack. This study provides a com- prehensive understanding of the mechanical protection properties of the beetle forewing and offers a good lesson for studying lightweight bio-inspired composite material.