Plastic resins are known to cause occupational allergies. Therefore, serum-specific antibodies against plastic resins have been widely investigated as diagnostic markers for occupational allergies. In this study, we a...Plastic resins are known to cause occupational allergies. Therefore, serum-specific antibodies against plastic resins have been widely investigated as diagnostic markers for occupational allergies. In this study, we aimed to establish a convenient method for detection of multiple chemical-specific IgG antibodies in human serum based on dot blot analysis. Toluene diisocyanate (TDI), phthalic anhydride (PA), and formaldehyde (FA), which are frequently used to synthesize various resins, reacted well with lysine residues of human serum albumin (HSA) under alkaline conditions. Native polyacrylamide gel electrophoresis (PAGE) showed that the structures of chemical adducts of HSA were different from those of native HSA. Therefore, we performed dot blot assays using these adducts as artificial antigens. Serum samples from workers at plants utilizing plastic resins strongly reacted with TDI, PA, and FA adducts in HSA, while reduced signals were detecting using the serum from unexposed workers. These results suggested that dot blot assays using chemical-HSA adducts as antigens could be beneficial for simultaneously measuring multiple chemical-specific IgGs.展开更多
文摘Plastic resins are known to cause occupational allergies. Therefore, serum-specific antibodies against plastic resins have been widely investigated as diagnostic markers for occupational allergies. In this study, we aimed to establish a convenient method for detection of multiple chemical-specific IgG antibodies in human serum based on dot blot analysis. Toluene diisocyanate (TDI), phthalic anhydride (PA), and formaldehyde (FA), which are frequently used to synthesize various resins, reacted well with lysine residues of human serum albumin (HSA) under alkaline conditions. Native polyacrylamide gel electrophoresis (PAGE) showed that the structures of chemical adducts of HSA were different from those of native HSA. Therefore, we performed dot blot assays using these adducts as artificial antigens. Serum samples from workers at plants utilizing plastic resins strongly reacted with TDI, PA, and FA adducts in HSA, while reduced signals were detecting using the serum from unexposed workers. These results suggested that dot blot assays using chemical-HSA adducts as antigens could be beneficial for simultaneously measuring multiple chemical-specific IgGs.