Hepatocellular carcinoma(HCC),a prevalent solid carcinoma of significant concern,is an aggressive and often fatal disease with increasing global incidence rates and poor therapeutic outcomes.The etiology and pathologi...Hepatocellular carcinoma(HCC),a prevalent solid carcinoma of significant concern,is an aggressive and often fatal disease with increasing global incidence rates and poor therapeutic outcomes.The etiology and pathological progression of non-alcoholic steatohepatitis(NASH)-related HCC is multifactorial and multistage.However,no single animal model can accurately mimic the full NASH-related HCC pathological progression,posing considerable challenges to transition and mechanistic studies.Herein,a novel conditional inducible wild-type human HRAS overexpressed mouse model(HRAS-HCC)was established,demonstrating 100%morbidity and mortality within approximately one month under normal dietary and lifestyle conditions.Advanced symptoms of HCC such as ascites,thrombus,internal hemorrhage,jaundice,and lung metastasis were successfully replicated in mice.In-depth pathological features of NASH-related HCC were demonstrated by pathological staining,biochemical analyses,and typical marker gene detections.Combined murine anti-PD-1 and sorafenib treatment effectively prolonged mouse survival,further confirming the accuracy and reliability of the model.Based on protein-protein interaction(PPI)network and RNA sequencing analyses,we speculated that overexpression of HRAS may initiate the THBS1-COL4A3 axis to induce NASH with severe fibrosis,with subsequent progression to HCC.Collectively,our study successfully duplicated natural sequential progression in a single murine model over a very short period,providing an accurate and reliable preclinical tool for therapeutic evaluations targeting the NASH to HCC continuum.展开更多
BACKGROUND The identification of specific gene expression patterns is crucial for understanding the mechanisms underlying primary biliary cholangitis(PBC)and finding relevant biomarkers for diagnosis and therapeutic e...BACKGROUND The identification of specific gene expression patterns is crucial for understanding the mechanisms underlying primary biliary cholangitis(PBC)and finding relevant biomarkers for diagnosis and therapeutic evaluation.AIM To determine PBC-associated hub genes and assess their clinical utility for disease prediction.METHODS PBC expression data were obtained from the Gene Expression Omnibus database.Overlapping genes from differential expression analysis and weighted gene coexpression network analysis(WGCNA)were identified as key genes for PBC.Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses were performed to explore the potential roles of key genes.Hub genes were identified in protein-protein interaction(PPI)networks using the Degree algorithm in Cytoscape software.The relationship between hub genes and immune cells was investigated.Finally,a Mendelian randomization study was conducted to determine the causal effects of hub genes on PBC.RESULTS We identified 71 overlapping key genes using differential expression analysis and WGCNA.These genes were primarily enriched in pathways related to cytokinecytokine receptor interaction,and Th1,Th2,and Th17 cell differentiation.We utilized Cytoscape software and identified five hub genes(CD247,IL10,CCL5,CCL3,and STAT3)in PPI networks.These hub genes showed a strong correlation with immune cell infiltration in PBC.However,inverse variance weighting analysis did not indicate the causal effects of hub genes on PBC risk.CONCLUSION Hub genes can potentially serve as valuable biomarkers for PBC prediction and treatment,thereby offering significant clinical utility.展开更多
BACKGROUND Mutation in the titin gene(TTN)in left ventricular noncompaction(LVNC)has been reported with a highly heterogeneous prevalence,and the molecular mechanisms underlying the pathogenesis of TTN gene mutation a...BACKGROUND Mutation in the titin gene(TTN)in left ventricular noncompaction(LVNC)has been reported with a highly heterogeneous prevalence,and the molecular mechanisms underlying the pathogenesis of TTN gene mutation are uncharacteri-zed.In the present study,we identified a novel TTN mutation in a pedigree with LVNC and investigated the potential pathogenic mechanism by functional studies.METHODS The whole-genome sequencing with linkage analysis was performed in a 3-generation family affected by autoso-mal dominant LVNC cardiomyopathy.The clustered regularly interspaced short palindromic repeats associated protein 9(CRISPR/Cas9)technology was used to establish novel truncating mutation in TTN in a rat cardiomyoblast H9C2 cell line in vitro,in which functional studies were carried out and characterized in comparison to its wild-type counterpart.RESULTS A novel truncating mutation TTN p.R2021X was identified as the only plausible disease-causing variant that segreg-ated with disease among the five surviving affected individuals,with an interrogation of the entire genome excluding other po-tential causes.Quantitative reverse transcription-polymerase chain reaction and cellular immunofluorescence supported a haplo-insufficient disease mechanism in titin truncation mutation cardiomyocytes.Further functional studies suggested mitochondrial abnormities in the presence of mutation,including decreased oxygen consumption rate,reduced adenosine triphosphate produc-tion,impaired activity of electron translation chain,and abnormal mitochondrial structure on electron microscopy.Impaired aut-ophagy under electron microscopy accompanied with activation of the Akt-mTORC1 signaling pathway was observed in TTN p.R2021X truncation mutation cardiomyocytes.CONCLUSIONS The TTN p.R2021X mutation has a function in the cause of a highly penetrant familial LVNC.These findings expand the spectrum of titin’s roles in cardiomyopathies and provide novel insight into the molecular basis of titin-truncating variants-associated LVNC.展开更多
Understanding the diet of threatened wildlife is vital for species-specific conservation and habitat management measures.The Red-crowned Crane(Grus japonensis)is a vulnerable bird distributed in Northeast Asia.Previou...Understanding the diet of threatened wildlife is vital for species-specific conservation and habitat management measures.The Red-crowned Crane(Grus japonensis)is a vulnerable bird distributed in Northeast Asia.Previous dietary studies of this bird focused mainly on its plant food composition based on field observations and microhistological identification.Herein,a total of 45 fecal samples were collected in November,December and January(15 fecal samples each month)from wintering cranes,and then subjected to a high throughput sequencing meta-barcoding approach to determine the primary plant(rbcL)and animal(COI)food items in their diet.A total of 230 operational taxonomic units(OTUs)of plant foods and 371 OTUs of animal foods were obtained.The main plant foods in the wintering period were Miscanthus,Zea,and Hordeum genera,which were similar to those in the breeding and the migration periods.Both agricultural and natural plants were detected,indicating a relatively broad dietary niche for this crane species.However,the main animal foods were representatives of Theridiidae,Megascolecidae,and Agelenidae,in sharp contrast to previous studies.The higher number of small terrestrial arthropods in animal foods might be due to the indirect intake of plants.The composition of both plant and animal foods in the diet showed the highest diversity in December,while it was homogeneous in January.The plant of Zea genus became the main source of nutrition in late winter,as supplementary feeding was performed in the reserve,which could help Red-crowned Cranes to get through the cold season.The results obtained in this work would contribute to the development of effective conservation strategies for the Red-crowned Crane.展开更多
High-order nonlinear multiphoton absorption is usually inefficient,but can be enhanced by designing resonant excitations between occupied and unoccupied energy levels.We conducted angle-resolved multi-photon photoemis...High-order nonlinear multiphoton absorption is usually inefficient,but can be enhanced by designing resonant excitations between occupied and unoccupied energy levels.We conducted angle-resolved multi-photon photoemission(mPPE)studies on the SnSe_(2)(001)surfaces excited by ultrashort laser pulses.By tuning photon energy and light polarization,we demonstrate the presence of a resonant four-photon photoemission(4PPE)process involving the occupied valence band(VB),the unoccupied second conduction band(CB2)and the unoccupied image-potential state(IPs)of SnSe_(2).In this 4PPE process,VB electrons of SnSe_(2) are resonantly excited into CB2 by adsorbing two photons,followed by the adsorption of another photon to populate the n=1 IPs before being emitted out to the vacuum by adsorbing one more photon.This results in a double-resonant 4PPE process,which exhibits approximately a 40 times enhancement in photoemission yields compared to cases where one of the resonant pathways,CB2→IPs,is inhibited by involving a virtual state instead of the IPs in the 4PPE.The double-resonant 4PPE process efficiently excite the bulk VB electrons outside the vacuum,like taking advantage of resonant“ladders”through two real empty electronic states of SnSe_(2).Our results highlight the important applications of mPPE in probing the band-structure,particularly the unoccupied states,of recently emerging main group dichalcogenide semiconductors.Furthermore,the discovered resonant mPPE process contributes to the exploration of their promising optoelectronic applications.展开更多
This study investigates the effects of cold-acclimation in conferring chilling tolerance in seedlings of the mulberry(Morus alba) variety ‘Qiuyu’. Changes in photosynthesis and antioxidant enzymes in chilling acclim...This study investigates the effects of cold-acclimation in conferring chilling tolerance in seedlings of the mulberry(Morus alba) variety ‘Qiuyu’. Changes in photosynthesis and antioxidant enzymes in chilling acclimatized(CA), and non-acclimatized(NA) seedlings were recorded during chilling stress(3 °C) and a recovery period(25 °C) each for 3 days. The results showed that CA plants had higher net photosynthetic rates(P_n), stomatal conductance(G_s), and maximum photochemical efficiency of photosystem Ⅱ(F_v/F_m) in response to chilling stress compared to NA. The seedlings maintained the same trends during the recovery stage. The responses of Q_A reduction degree (1-q_P) and prime electronic transfer rates(F_o) were lower in acclimatized than in non-acclimatized seedlings. Low-temperature acclimation and chilling stress also caused an increase in leaf proline and soluble sugar contents. Leaf malondialdehyde levels were significantly lower while ascorbate peroxidase(APX) activity was significantly higher in acclimatized seedlings, suggesting that elevated osmolytes and APX confer resistance to chilling temperatures. In this study on the response of mulberry seedlings to chilling stress, we also looked at the recovery process. The response to chilling determines whether mulberry leaves can survive under cold temperatures, while the recovery process determines whether photosynthesis can recover as soon as possible to avoid any secondary damage.展开更多
Rapid-cooling friction-stir-welding(FSW)was used to join AZ31B magnesium alloy plates of 6 mm in thickness.The microstructure and mechanical properties in thickness direction were carefully investigated with electron ...Rapid-cooling friction-stir-welding(FSW)was used to join AZ31B magnesium alloy plates of 6 mm in thickness.The microstructure and mechanical properties in thickness direction were carefully investigated with electron backscattered diffractometer,and transmission electron microscope.The obtained results showed that ultrafine grains with high dislocation density were obtained in the top region of the weld due to liquid CO2 cooling.A large number of{1012}twins and second-phase particles were also induced in these refined grains.The basal texture intensity was significantly reduced due to the appearance of{1012}twins.The top region showed the higher strength and elongation compared with the bottom region,and the welding efficiency reached 93%.This work provided a simple and efficient strategy for manufacturing a gradient structure in the FSW Mg alloy joint.展开更多
We applied under pot-culture conditions and the double-casing pot method to study the characteristics of photosynthetic gas exchange and chlorophyll fluorescence in the leaves of Physocarpus amurensis Maxim (PA) and...We applied under pot-culture conditions and the double-casing pot method to study the characteristics of photosynthetic gas exchange and chlorophyll fluorescence in the leaves of Physocarpus amurensis Maxim (PA) and Physocarpus opulifolius under flooding stress. Our results indicate a significantly higher flooding tolerance of P. opulifolius compared to P. amurensis. Especially in P. amurensis, the limitation of non-stomatal factors played a major role in the advanced stages of flooding stress, observed as a rapid increase of the intercellular C02 con- centration (Ci) and a decrease of the stomatal limitation value (Ls). The maximal PSII photochemical efficiencies (Fv/Fm) and actual photochemical efficiency (60PSU) in the leaves of P. opulifolius were extent of decrease during the than in P. amurensis. In significantly higher, and the flooding process was smaller addition, the non-chemical quenching (NPQ) in the leaves of P. opulifolius significandy increased from the 10th day under flooding stress, while the variation of NPQ in the leaves of P. amurensis was much smaller. This indicates that the leaves of P. opulifolius had not only higher PSII photochemical activity, but also improved tolerance to flooding stress, which may be caused by its ability to dissipate excess excitation energy by starting NPQ. At the 16th day under flooding stress, the PLABS significantly decreased with greater extent of decrease than Fv/Fm in the leaves of both Physocarpus, but the decreasing extent of PIABS in P. opulifolius was significantly smaller than in P. amurensis. In the 16th day under flooding stress, the fluorescence at J and I point (VJ and V1) in P. amurensis were significantly higher, and the extent of increase in VJ was greater than V1. However, the variations of VJ and V1 in the leaves of P. opulifolius were smaller, suggesting that the damage sites of flooding stress to PSII in the leaves of P. amurensis were mainly located in the electron transport process from QA at the PSII receptor side to QB- Flooding stress reduced the proportion (φEo) of luminous energy absorbed by the PSII reaction center for the electron transport following Q2, while the maximum quantum yield (φDo) of non-photochemical quenching increased. However, the TRo/RC and ETo/RC in the leaves of P. amurensis decreased accompanied by a dramatic increase of energy (DIo/RC) from the dissipation in the reaction center. This further indicated that the function of the PSII reaction center in the leaves of P. amurensis was significantly lower than in P. opulifolius.展开更多
BACKGROUND Mirizzi syndrome(MS)remains a challenging biliary disease,and its low rate of preoperative diagnosis should be resolved.Moreover,technological advances have not resulted in decisive improvements in the surg...BACKGROUND Mirizzi syndrome(MS)remains a challenging biliary disease,and its low rate of preoperative diagnosis should be resolved.Moreover,technological advances have not resulted in decisive improvements in the surgical treatment of MS.Complex bile duct lesions due to MS make surgery difficult,especially when the laparoscopic approach is adopted.The safety and long-term effect of MS treatment need to be guaranteed in terms of preoperative diagnosis and surgical strategy.AIM To analyze preoperative diagnostic methods and the safety,effectiveness,prognosis and related factors of surgical strategies for different types of MS.METHODS The clinical data of MS patients who received surgical treatment from January 1,2010 to December 31,2020 were retrospectively reviewed.Patients with malignancies,choledochojejunal fistula,lack of data and lost to follow-up were excluded.According to preoperative imaging examination records and documented intraoperative findings,the clinical types of MS were determined using the Csendes classification.The safety,effectiveness and long-term prognosis of surgical treatment in different types of MS,and their interactions with the clinical characteristics of patients were summarized.RESULTS Sixty-six patients with MS were included(34 males and 32 females).Magnetic resonance imaging/magnetic resonance cholangiopancreatography(MRI/MRCP)showed specific imaging features of MS in 58 cases(87.9%),which was superior to ultrasound scan(USS)in the diagnosis of MS and more sensitive to subtle biliary lesions than USS.The overall laparoscopic surgery completion rate was 53.03%(35/66),where the completion rates of MS type I,II and III were 69.05%(29/42),42.86%(6/14)and zero(0/10),respectively.Thirty-one patients(46.97%)underwent laparotomy or conversion to laparotomy including 11 cases of iatrogenic bile duct injury which occurred in type I patients,and 25 of these patients underwent bile duct exploration,repair and T-tube drainage.In addition,25 patients underwent intraoperative choledochoscopy and T-tube cholangiography.Overall,21 cases(31.8%)were repaired by simple suturing,and 14 cases(21.2%)were repaired using the remaining gallbladder wall patch in the subtotal cholecystectomy.The ascendant of the Csendes classification types led to an increase in surgical complexity reflected by increased operation time,bleeding volume and cost.Gender,acute abdominal pain and measurable stone size had no effect on Csendes type of MS or final surgical approach.Age had no effect on the classification of MS,but it influenced the final surgical approach,hospital stay and cost.A total of 66 patients obtained a relatively high preoperative diagnostic rate and underwent surgery safely without serious complications,and no mortality was observed during the follow-up period of 36.5±26.5 mo(range 13-76,median 22 mo).CONCLUSION MRI/MRCP can improve the preoperative diagnosis of MS.The Csendes classification can reflect the difficulty of treatment.The surgical strategies including laparoscopic surgery for MS should be formulated based on full evaluation and selection.展开更多
Background Ultrasound-guided continuous thoracic paravertebral block can provide pain-relieving and opioid-sparing effects in patients receiving open hepatectomy.We hypothesize that these effects may improve the quali...Background Ultrasound-guided continuous thoracic paravertebral block can provide pain-relieving and opioid-sparing effects in patients receiving open hepatectomy.We hypothesize that these effects may improve the quality of recovery(QoR)after open hepatectomy.Methods Seventy-six patients undergoing open hepatectomy were randomized to receive a continuous thoracic paravertebral block with ropivacaine(CTPVB group)or normal saline(control group).All patients received patient-controlled intravenous analgesia with morphine postoperatively for 48 hours.The primary outcome was the global Chinese 15-item Quality of Recovery score on postoperative day 7,which was statistically analyzed using Student’s t-test.Results Thirty-six patients in the CTPVB group and 37 in the control group completed the study.Compared to the control group,the CTPVB group had significantly increased global Chinese 15-item Quality of Recovery scores(133.14±12.97 vs.122.62±14.89,P=0.002)on postoperative day 7.Postoperative pain scores and cumulative morphine consumption were significantly lower for up to 8 and 48 hours(P<0.05;P=0.002),respectively,in the CTPVB group.Conclusion Perioperative CTPVB markably promotes patient’s QoR after open hepatectomy with a profound analgesic effect in the early postoperative period.展开更多
The 2 mm-thickα-brass plates were successfully joined using conventional friction stir welding(CFSW)with air cooling and rapid cooling friction stir welding(RCFSW)with liquid CO2 cooling.The microstructure and mechan...The 2 mm-thickα-brass plates were successfully joined using conventional friction stir welding(CFSW)with air cooling and rapid cooling friction stir welding(RCFSW)with liquid CO2 cooling.The microstructure and mechanical properties of the two welds were carefully investigated by electron back-scattered diffraction and transmission electron microscopy.The stir zone of CFSW exhibited homogeneous equiaxed grains,while the stir zone of RCFSW showed a heterogeneous grain structure,i.e.ultrafine grains containing massive dislocations and nano twins.Compared with the CFSW,yield strength and ultimate tensile strength of RCFSW were increased by 31%and 24%,respectively.The enhanced yield strength and improved strain hardening capacity were attributed to grain boundary strengthening and dislocation strengthening.Furthermore,good ductility was achieved due to the released stress concentration of the nano twins caused by the plastic deformation.展开更多
基金supported by the National Institutes for Food and Drug Control,State Key Laboratory of Drug Regulatory Science。
文摘Hepatocellular carcinoma(HCC),a prevalent solid carcinoma of significant concern,is an aggressive and often fatal disease with increasing global incidence rates and poor therapeutic outcomes.The etiology and pathological progression of non-alcoholic steatohepatitis(NASH)-related HCC is multifactorial and multistage.However,no single animal model can accurately mimic the full NASH-related HCC pathological progression,posing considerable challenges to transition and mechanistic studies.Herein,a novel conditional inducible wild-type human HRAS overexpressed mouse model(HRAS-HCC)was established,demonstrating 100%morbidity and mortality within approximately one month under normal dietary and lifestyle conditions.Advanced symptoms of HCC such as ascites,thrombus,internal hemorrhage,jaundice,and lung metastasis were successfully replicated in mice.In-depth pathological features of NASH-related HCC were demonstrated by pathological staining,biochemical analyses,and typical marker gene detections.Combined murine anti-PD-1 and sorafenib treatment effectively prolonged mouse survival,further confirming the accuracy and reliability of the model.Based on protein-protein interaction(PPI)network and RNA sequencing analyses,we speculated that overexpression of HRAS may initiate the THBS1-COL4A3 axis to induce NASH with severe fibrosis,with subsequent progression to HCC.Collectively,our study successfully duplicated natural sequential progression in a single murine model over a very short period,providing an accurate and reliable preclinical tool for therapeutic evaluations targeting the NASH to HCC continuum.
基金Supported by School-Level Key Projects at Bengbu Medical College,No.2021byzd109。
文摘BACKGROUND The identification of specific gene expression patterns is crucial for understanding the mechanisms underlying primary biliary cholangitis(PBC)and finding relevant biomarkers for diagnosis and therapeutic evaluation.AIM To determine PBC-associated hub genes and assess their clinical utility for disease prediction.METHODS PBC expression data were obtained from the Gene Expression Omnibus database.Overlapping genes from differential expression analysis and weighted gene coexpression network analysis(WGCNA)were identified as key genes for PBC.Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses were performed to explore the potential roles of key genes.Hub genes were identified in protein-protein interaction(PPI)networks using the Degree algorithm in Cytoscape software.The relationship between hub genes and immune cells was investigated.Finally,a Mendelian randomization study was conducted to determine the causal effects of hub genes on PBC.RESULTS We identified 71 overlapping key genes using differential expression analysis and WGCNA.These genes were primarily enriched in pathways related to cytokinecytokine receptor interaction,and Th1,Th2,and Th17 cell differentiation.We utilized Cytoscape software and identified five hub genes(CD247,IL10,CCL5,CCL3,and STAT3)in PPI networks.These hub genes showed a strong correlation with immune cell infiltration in PBC.However,inverse variance weighting analysis did not indicate the causal effects of hub genes on PBC risk.CONCLUSION Hub genes can potentially serve as valuable biomarkers for PBC prediction and treatment,thereby offering significant clinical utility.
基金supported by the National Key Research and Development Program of China(2016 YFC1300100)the National Natural Science Foundation of China(No.81974042)+1 种基金the Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences(2019XK320058)the Peking Union Medical College Youth Fund(No.3332018058).
文摘BACKGROUND Mutation in the titin gene(TTN)in left ventricular noncompaction(LVNC)has been reported with a highly heterogeneous prevalence,and the molecular mechanisms underlying the pathogenesis of TTN gene mutation are uncharacteri-zed.In the present study,we identified a novel TTN mutation in a pedigree with LVNC and investigated the potential pathogenic mechanism by functional studies.METHODS The whole-genome sequencing with linkage analysis was performed in a 3-generation family affected by autoso-mal dominant LVNC cardiomyopathy.The clustered regularly interspaced short palindromic repeats associated protein 9(CRISPR/Cas9)technology was used to establish novel truncating mutation in TTN in a rat cardiomyoblast H9C2 cell line in vitro,in which functional studies were carried out and characterized in comparison to its wild-type counterpart.RESULTS A novel truncating mutation TTN p.R2021X was identified as the only plausible disease-causing variant that segreg-ated with disease among the five surviving affected individuals,with an interrogation of the entire genome excluding other po-tential causes.Quantitative reverse transcription-polymerase chain reaction and cellular immunofluorescence supported a haplo-insufficient disease mechanism in titin truncation mutation cardiomyocytes.Further functional studies suggested mitochondrial abnormities in the presence of mutation,including decreased oxygen consumption rate,reduced adenosine triphosphate produc-tion,impaired activity of electron translation chain,and abnormal mitochondrial structure on electron microscopy.Impaired aut-ophagy under electron microscopy accompanied with activation of the Akt-mTORC1 signaling pathway was observed in TTN p.R2021X truncation mutation cardiomyocytes.CONCLUSIONS The TTN p.R2021X mutation has a function in the cause of a highly penetrant familial LVNC.These findings expand the spectrum of titin’s roles in cardiomyopathies and provide novel insight into the molecular basis of titin-truncating variants-associated LVNC.
基金financially supported by the Natural Science Foundation of Jiangsu Province,China(No.BK20191161)the Fundamental Research Funds for the Central Universities of China(No.B210202129)+2 种基金the National Natural Science Foundation of China(Nos.51601058,51879089)Changzhou Sci&Tech Program,China(No.CJ20210154)Postgraduate Research and Innovation Project of Jiangsu Province,China(No.KYCX22_0599)。
基金supported by the Natural Science Foundation of Jiangsu Province,China(No.BK20211067)the National Natural Science Foundation of China(No.51805145)the Qing-Lan Project of Jiangsu Province,China。
基金supported by the National Natural Science Foundation of China(No.31800453)the Biodiversity Investigation,Observation and Assessment Program(2019-2023)+1 种基金the Ministry of Ecology and Environment of China(2110404)the Science and Technology Department of Sichuan Province(No.2022YFS0487).
文摘Understanding the diet of threatened wildlife is vital for species-specific conservation and habitat management measures.The Red-crowned Crane(Grus japonensis)is a vulnerable bird distributed in Northeast Asia.Previous dietary studies of this bird focused mainly on its plant food composition based on field observations and microhistological identification.Herein,a total of 45 fecal samples were collected in November,December and January(15 fecal samples each month)from wintering cranes,and then subjected to a high throughput sequencing meta-barcoding approach to determine the primary plant(rbcL)and animal(COI)food items in their diet.A total of 230 operational taxonomic units(OTUs)of plant foods and 371 OTUs of animal foods were obtained.The main plant foods in the wintering period were Miscanthus,Zea,and Hordeum genera,which were similar to those in the breeding and the migration periods.Both agricultural and natural plants were detected,indicating a relatively broad dietary niche for this crane species.However,the main animal foods were representatives of Theridiidae,Megascolecidae,and Agelenidae,in sharp contrast to previous studies.The higher number of small terrestrial arthropods in animal foods might be due to the indirect intake of plants.The composition of both plant and animal foods in the diet showed the highest diversity in December,while it was homogeneous in January.The plant of Zea genus became the main source of nutrition in late winter,as supplementary feeding was performed in the reserve,which could help Red-crowned Cranes to get through the cold season.The results obtained in this work would contribute to the development of effective conservation strategies for the Red-crowned Crane.
基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XD30000000)the National Key R&D Program of China(Grant Nos.2018YFA0305802 and 2017YFA0303500)the National Natural Science Foundation of China(Grant No.11774267).Calculations were performed at the supercomputing center of WHU of China.
文摘High-order nonlinear multiphoton absorption is usually inefficient,but can be enhanced by designing resonant excitations between occupied and unoccupied energy levels.We conducted angle-resolved multi-photon photoemission(mPPE)studies on the SnSe_(2)(001)surfaces excited by ultrashort laser pulses.By tuning photon energy and light polarization,we demonstrate the presence of a resonant four-photon photoemission(4PPE)process involving the occupied valence band(VB),the unoccupied second conduction band(CB2)and the unoccupied image-potential state(IPs)of SnSe_(2).In this 4PPE process,VB electrons of SnSe_(2) are resonantly excited into CB2 by adsorbing two photons,followed by the adsorption of another photon to populate the n=1 IPs before being emitted out to the vacuum by adsorbing one more photon.This results in a double-resonant 4PPE process,which exhibits approximately a 40 times enhancement in photoemission yields compared to cases where one of the resonant pathways,CB2→IPs,is inhibited by involving a virtual state instead of the IPs in the 4PPE.The double-resonant 4PPE process efficiently excite the bulk VB electrons outside the vacuum,like taking advantage of resonant“ladders”through two real empty electronic states of SnSe_(2).Our results highlight the important applications of mPPE in probing the band-structure,particularly the unoccupied states,of recently emerging main group dichalcogenide semiconductors.Furthermore,the discovered resonant mPPE process contributes to the exploration of their promising optoelectronic applications.
基金financially supported by the National Natural Science Foundation(31500323 41501583 31370426)
文摘This study investigates the effects of cold-acclimation in conferring chilling tolerance in seedlings of the mulberry(Morus alba) variety ‘Qiuyu’. Changes in photosynthesis and antioxidant enzymes in chilling acclimatized(CA), and non-acclimatized(NA) seedlings were recorded during chilling stress(3 °C) and a recovery period(25 °C) each for 3 days. The results showed that CA plants had higher net photosynthetic rates(P_n), stomatal conductance(G_s), and maximum photochemical efficiency of photosystem Ⅱ(F_v/F_m) in response to chilling stress compared to NA. The seedlings maintained the same trends during the recovery stage. The responses of Q_A reduction degree (1-q_P) and prime electronic transfer rates(F_o) were lower in acclimatized than in non-acclimatized seedlings. Low-temperature acclimation and chilling stress also caused an increase in leaf proline and soluble sugar contents. Leaf malondialdehyde levels were significantly lower while ascorbate peroxidase(APX) activity was significantly higher in acclimatized seedlings, suggesting that elevated osmolytes and APX confer resistance to chilling temperatures. In this study on the response of mulberry seedlings to chilling stress, we also looked at the recovery process. The response to chilling determines whether mulberry leaves can survive under cold temperatures, while the recovery process determines whether photosynthesis can recover as soon as possible to avoid any secondary damage.
基金Project(51805145)supported by the National Natural Science Foundation of ChinaProject(CJ20200076)supported by the Changzhou Science and Technology Program,China+1 种基金Project(B200202229)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2020102941517)supported by Hohai University Undergraduate Innovation and Entrepreneurship Training Program,China。
文摘Rapid-cooling friction-stir-welding(FSW)was used to join AZ31B magnesium alloy plates of 6 mm in thickness.The microstructure and mechanical properties in thickness direction were carefully investigated with electron backscattered diffractometer,and transmission electron microscope.The obtained results showed that ultrafine grains with high dislocation density were obtained in the top region of the weld due to liquid CO2 cooling.A large number of{1012}twins and second-phase particles were also induced in these refined grains.The basal texture intensity was significantly reduced due to the appearance of{1012}twins.The top region showed the higher strength and elongation compared with the bottom region,and the welding efficiency reached 93%.This work provided a simple and efficient strategy for manufacturing a gradient structure in the FSW Mg alloy joint.
基金supported by the National Natural Science Foundation of China(No.31500323)
文摘We applied under pot-culture conditions and the double-casing pot method to study the characteristics of photosynthetic gas exchange and chlorophyll fluorescence in the leaves of Physocarpus amurensis Maxim (PA) and Physocarpus opulifolius under flooding stress. Our results indicate a significantly higher flooding tolerance of P. opulifolius compared to P. amurensis. Especially in P. amurensis, the limitation of non-stomatal factors played a major role in the advanced stages of flooding stress, observed as a rapid increase of the intercellular C02 con- centration (Ci) and a decrease of the stomatal limitation value (Ls). The maximal PSII photochemical efficiencies (Fv/Fm) and actual photochemical efficiency (60PSU) in the leaves of P. opulifolius were extent of decrease during the than in P. amurensis. In significantly higher, and the flooding process was smaller addition, the non-chemical quenching (NPQ) in the leaves of P. opulifolius significandy increased from the 10th day under flooding stress, while the variation of NPQ in the leaves of P. amurensis was much smaller. This indicates that the leaves of P. opulifolius had not only higher PSII photochemical activity, but also improved tolerance to flooding stress, which may be caused by its ability to dissipate excess excitation energy by starting NPQ. At the 16th day under flooding stress, the PLABS significantly decreased with greater extent of decrease than Fv/Fm in the leaves of both Physocarpus, but the decreasing extent of PIABS in P. opulifolius was significantly smaller than in P. amurensis. In the 16th day under flooding stress, the fluorescence at J and I point (VJ and V1) in P. amurensis were significantly higher, and the extent of increase in VJ was greater than V1. However, the variations of VJ and V1 in the leaves of P. opulifolius were smaller, suggesting that the damage sites of flooding stress to PSII in the leaves of P. amurensis were mainly located in the electron transport process from QA at the PSII receptor side to QB- Flooding stress reduced the proportion (φEo) of luminous energy absorbed by the PSII reaction center for the electron transport following Q2, while the maximum quantum yield (φDo) of non-photochemical quenching increased. However, the TRo/RC and ETo/RC in the leaves of P. amurensis decreased accompanied by a dramatic increase of energy (DIo/RC) from the dissipation in the reaction center. This further indicated that the function of the PSII reaction center in the leaves of P. amurensis was significantly lower than in P. opulifolius.
文摘BACKGROUND Mirizzi syndrome(MS)remains a challenging biliary disease,and its low rate of preoperative diagnosis should be resolved.Moreover,technological advances have not resulted in decisive improvements in the surgical treatment of MS.Complex bile duct lesions due to MS make surgery difficult,especially when the laparoscopic approach is adopted.The safety and long-term effect of MS treatment need to be guaranteed in terms of preoperative diagnosis and surgical strategy.AIM To analyze preoperative diagnostic methods and the safety,effectiveness,prognosis and related factors of surgical strategies for different types of MS.METHODS The clinical data of MS patients who received surgical treatment from January 1,2010 to December 31,2020 were retrospectively reviewed.Patients with malignancies,choledochojejunal fistula,lack of data and lost to follow-up were excluded.According to preoperative imaging examination records and documented intraoperative findings,the clinical types of MS were determined using the Csendes classification.The safety,effectiveness and long-term prognosis of surgical treatment in different types of MS,and their interactions with the clinical characteristics of patients were summarized.RESULTS Sixty-six patients with MS were included(34 males and 32 females).Magnetic resonance imaging/magnetic resonance cholangiopancreatography(MRI/MRCP)showed specific imaging features of MS in 58 cases(87.9%),which was superior to ultrasound scan(USS)in the diagnosis of MS and more sensitive to subtle biliary lesions than USS.The overall laparoscopic surgery completion rate was 53.03%(35/66),where the completion rates of MS type I,II and III were 69.05%(29/42),42.86%(6/14)and zero(0/10),respectively.Thirty-one patients(46.97%)underwent laparotomy or conversion to laparotomy including 11 cases of iatrogenic bile duct injury which occurred in type I patients,and 25 of these patients underwent bile duct exploration,repair and T-tube drainage.In addition,25 patients underwent intraoperative choledochoscopy and T-tube cholangiography.Overall,21 cases(31.8%)were repaired by simple suturing,and 14 cases(21.2%)were repaired using the remaining gallbladder wall patch in the subtotal cholecystectomy.The ascendant of the Csendes classification types led to an increase in surgical complexity reflected by increased operation time,bleeding volume and cost.Gender,acute abdominal pain and measurable stone size had no effect on Csendes type of MS or final surgical approach.Age had no effect on the classification of MS,but it influenced the final surgical approach,hospital stay and cost.A total of 66 patients obtained a relatively high preoperative diagnostic rate and underwent surgery safely without serious complications,and no mortality was observed during the follow-up period of 36.5±26.5 mo(range 13-76,median 22 mo).CONCLUSION MRI/MRCP can improve the preoperative diagnosis of MS.The Csendes classification can reflect the difficulty of treatment.The surgical strategies including laparoscopic surgery for MS should be formulated based on full evaluation and selection.
文摘Background Ultrasound-guided continuous thoracic paravertebral block can provide pain-relieving and opioid-sparing effects in patients receiving open hepatectomy.We hypothesize that these effects may improve the quality of recovery(QoR)after open hepatectomy.Methods Seventy-six patients undergoing open hepatectomy were randomized to receive a continuous thoracic paravertebral block with ropivacaine(CTPVB group)or normal saline(control group).All patients received patient-controlled intravenous analgesia with morphine postoperatively for 48 hours.The primary outcome was the global Chinese 15-item Quality of Recovery score on postoperative day 7,which was statistically analyzed using Student’s t-test.Results Thirty-six patients in the CTPVB group and 37 in the control group completed the study.Compared to the control group,the CTPVB group had significantly increased global Chinese 15-item Quality of Recovery scores(133.14±12.97 vs.122.62±14.89,P=0.002)on postoperative day 7.Postoperative pain scores and cumulative morphine consumption were significantly lower for up to 8 and 48 hours(P<0.05;P=0.002),respectively,in the CTPVB group.Conclusion Perioperative CTPVB markably promotes patient’s QoR after open hepatectomy with a profound analgesic effect in the early postoperative period.
基金The authors are grateful for the financial supports from the Natural Science Foundation of Jiangsu Province,China(No.BK20211067)the National Natural Science Foundation of China(No.51805145)+2 种基金the Changzhou Science and Technology Program,China(No.CJ20200076)the Fundamental Research Funds for the Central Universities,China(No.B200202229)the‘Blue Project’of Jiangsu Province,China.
文摘The 2 mm-thickα-brass plates were successfully joined using conventional friction stir welding(CFSW)with air cooling and rapid cooling friction stir welding(RCFSW)with liquid CO2 cooling.The microstructure and mechanical properties of the two welds were carefully investigated by electron back-scattered diffraction and transmission electron microscopy.The stir zone of CFSW exhibited homogeneous equiaxed grains,while the stir zone of RCFSW showed a heterogeneous grain structure,i.e.ultrafine grains containing massive dislocations and nano twins.Compared with the CFSW,yield strength and ultimate tensile strength of RCFSW were increased by 31%and 24%,respectively.The enhanced yield strength and improved strain hardening capacity were attributed to grain boundary strengthening and dislocation strengthening.Furthermore,good ductility was achieved due to the released stress concentration of the nano twins caused by the plastic deformation.