期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
调控聚氨酯聚集态结构制备高性能介电弹性体 被引量:1
1
作者 刘苏亭 王秀娟 +1 位作者 宁南英 田明 《高分子学报》 SCIE CAS CSCD 北大核心 2023年第2期266-276,共11页
通过退火保温调控聚氨酯(TPU)的相结构、结晶结构和氢键结构,进而调控其模量和介电常数(ε'),提高TPU的电驱动性能.使用扫描电子显微镜(SEM)和小角X射线(SAXS)研究TPU的结晶结构,基于红外光谱对TPU的氢键变化进行半定量分析,使用原... 通过退火保温调控聚氨酯(TPU)的相结构、结晶结构和氢键结构,进而调控其模量和介电常数(ε'),提高TPU的电驱动性能.使用扫描电子显微镜(SEM)和小角X射线(SAXS)研究TPU的结晶结构,基于红外光谱对TPU的氢键变化进行半定量分析,使用原子力显微镜(AFM)研究TPU的微相分离结构.结果显示,退火温度和时间不同导致TPU的聚集态结构各异,对模量、ε'和电驱动性能产生了较为复杂的影响.低温(80℃)退火处理后,硬相分布于连续的软段相,且形成了较多软段结晶,相分离程度和氢键破坏程度提高.相比于高温(150℃)退火处理,低温退火后获得较高ε'的同时保持了较低的模量,从而产生较大电致形变.值得注意的是,低温退火条件下产生大范围的软段结晶,使得软段分子链之间排布紧密,导致TPU电击穿强度大幅度提升,得到具有高击穿强度、高电致形变的TPU介电弹性体材料.80℃退火处理6 h后,TPU的电击穿强度从退火处理前的25 kV/mm提高至32 kV/mm,最大电致形变从0.77%提高至3.3%,提高4.3倍. 展开更多
关键词 聚氨酯 介电弹性体 结晶 相分离 电致形变
原文传递
Silicone Elastomer with High Elongation at Break Used in Digital Light Processing 3D Printing
2
作者 Tian-Xin Yu Ya-Yuan Liu +3 位作者 Fu-Yue Tian nan-ying ning Bing Yu Ming Tian 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2023年第11期1786-1795,I0010,共11页
3D printing silicone elastomer has demonstrated great potential in diverse areas such as medical devices,flexible electronics and soft robotics.It is of great value to investigate how to improve the mechanical propert... 3D printing silicone elastomer has demonstrated great potential in diverse areas such as medical devices,flexible electronics and soft robotics.It is of great value to investigate how to improve the mechanical properties,including tensile strength and elongation at break of printed parts.In this work,a light curing system that can be applied in silicone elastomer 3D printing is explored,which is composed of vinyl terminated polysiloxane as the macromer and thiol containing polysiloxane as the crosslinking agent,and a chain extension reaction is also introduced into this light curing system via the addition of the chain extender dithiol molecules,and a light curing system accompanied with chain extension is designed and realized based on the thiol-ene click reaction mechanism.After reinforced with silica fillers,the obtained light curing system can endow the light curing silicone elastomer with better mechanical properties under the condition of a lower viscosity of the precursor,the tensile strength and elongation at break can reach 525.5 k Pa and 601%,respectively.This light curing system provides a feasible method to solve the contradiction between the viscosity of the precursor and the mechanical properties of the light curing elastomer in the digital light processing(DLP)3D printing field. 展开更多
关键词 Silicone elastomer Thiol-ene click chemistry Light curing 3D-printing Chain extender
原文传递
Excellent Compatibilization Effect of a Dual Reactive Compatibilizer on the Immiscible MVQ/PP Blends
3
作者 Han-Bin Wang Hong-Chi Tian +4 位作者 Shi-Jia Zhang Bing Yu nan-ying ning Ming Tian Li-Qun Zhang 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2023年第7期1133-1141,共9页
Methyl vinyl silicone rubber (MVQ)/polypropylene (PP) thermoplastic vulcanizate (TPV) combines the good melt processability, recyclability and sealing performance as well as biosafety, stain and fluid resistance, and ... Methyl vinyl silicone rubber (MVQ)/polypropylene (PP) thermoplastic vulcanizate (TPV) combines the good melt processability, recyclability and sealing performance as well as biosafety, stain and fluid resistance, and thus it is especially suitable in bio-safety areas and wearable electronic devices, etc. Nevertheless, the compatibility between MVQ and PP phases is poor. A big challenge on the compatibilization of MVQ/PP blends is that neither MVQ nor PP contains any reactive groups. In this study, a dual reactive compatibilizer composed of ethylenemethyl acrylate-glycidyl methacrylate terpolymer (EMA-co-GMA) and maleic anhydride grafted polypropylene (PP-g-MAH) was designed for the compatibilization of MVQ/PP blends. During melt blending, a copolymer compatibilizer at the MVQ/PP interface can be formed because of the in situ reaction between EMA-co-GMA and PP-g-MAH. The thermodynamic predict of its compatibilization effect through calculating the spreading coefficient of the in situ formed copolymer indicates that it can well compatibilize MVQ/PP blends. The experimental results show that under the GMA/MAH molar ratio of 0.5/1, the interface thickness largely increase from 102 nm for non-compatibilized blend to 406 nm, and the average size of MVQ dispersed phase largely decreases from 2.3 µm to 0.36 µm, the Tg of the two phases shifts toward each other, the mixing torque and mechanical properties of the blend are increased, all indicating its good compatibilization effect. This study provides a good compatibilizing method for immiscible MVQ/PP blends with no reactive groups in both components for the preparation of high performance MVQ/PP TPVs. 展开更多
关键词 Methyl vinyl silicone rubber(MVQ) Polypropylene(PP) Immiscible polymer blends Reactive compatibilization
原文传递
Polyurethane-polysiloxane Copolymer Compatibilized SiR/TPU TPV with Comfortable Human Touch Toward Wearable Devices
4
作者 Hong-Fang Zhang Qian Hao +6 位作者 Hong-Chi Tian Peng-Jun Yao Xue-Ying Liu Bing Yu nan-ying ning Ming Tian Li-Qun Zhang 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2023年第2期258-266,共9页
Because of its softness,wear resistance,biocompatibility,extremely comfortable human touch,thermoplastic vulcanizate(TPV)comprised of silicone rubber(SiR)and thermoplastic polyurethane(TPU)(SiR/TPU TPV)is especially s... Because of its softness,wear resistance,biocompatibility,extremely comfortable human touch,thermoplastic vulcanizate(TPV)comprised of silicone rubber(SiR)and thermoplastic polyurethane(TPU)(SiR/TPU TPV)is especially suitable for wearable intelligent devices.Nevertheless,developing good compatibilizer is still required to prepare high performance SiR/TPU TPV.In this study,three kinds of polyurethane-polysiloxane copolymer(PU-co-PSi)with different contents of polysiloxane segment were selected,and their compatibilization effect on SiR/TPU blends was studied using nanomechanical mapping technique of AFM.The results show that using PU-co-PSi with the highest content of polysiloxane segment(PU-co-HPSi),the interface thickness largely increases,and the average size of SiR dispersed phase largely decreases,indicating its good compatibilization effect.By using PU-co-HPSi as compatibilizer,SiR/TPU TPV with a fine SiR dispersed phase and good mechanical performance were successfully prepared.The mechanism on the compatibilization effect of these PU-co-PSi on SiR/TPU TPVs was revealed. 展开更多
关键词 Silicone rubber(SiR) Thermoplastic polyurethane(TPU) COMPATIBILIZATION Thermoplastic vulcanizate(TPV)
原文传递
基于Diels-Alder反应的热可逆高导电硅橡胶/碳管复合材料的制备 被引量:11
5
作者 王怡 冯展彬 +4 位作者 左洪礼 于冰 宁南英 田明 张立群 《高分子学报》 SCIE CAS CSCD 北大核心 2019年第5期485-495,共11页
使用碳纳米管(CNTs)作为亲二烯体,制备了接枝呋喃官能团的硅橡胶(SiR-Fu)作为二烯体,二者进行Diels-Alder反应,在CNTs与SiR-Fu基体之间构建了可逆共价交联网络,制备了一种同时具有良好的界面粘结、较好的力学强度、高导电性和较好热可... 使用碳纳米管(CNTs)作为亲二烯体,制备了接枝呋喃官能团的硅橡胶(SiR-Fu)作为二烯体,二者进行Diels-Alder反应,在CNTs与SiR-Fu基体之间构建了可逆共价交联网络,制备了一种同时具有良好的界面粘结、较好的力学强度、高导电性和较好热可逆性质的导电硅橡胶(SiR)复合材料.其中,CNTs既作为增强填料和导电填料,又能与SiR主链上的呋喃官能团发生Diels-Alder反应而形成动态共价键,使得复合材料具有热可逆性、可回收再利用性且能提高复合材料的界面粘结和力学强度.较之纯SiR,CNTs含量为10 wt%的复合材料的电导率从2.5×10^(-14) S/cm提高到0.9 S/cm;拉伸强度从0.2 MPa提高到2.3 MPa;对样品进行二次模压成型之后,其拉伸强度回复率为77%,断裂伸长率回复率为88%,电导率回复率为86%. 展开更多
关键词 导电橡胶复合材料 硅橡胶 DIELS-ALDER反应 热可逆性 碳纳米管
原文传递
Morphologies and Mechanical Properties of Cis-1,4-butadiene Rubber/Polyethylene Blends 被引量:2
6
作者 Hong Yao Jia-li Niu +6 位作者 Jie Zhang nan-ying ning Xiao-qiu Yang 田明 Xiao-li Sun Li-qun Zhang 闫寿科 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2016年第7期820-829,共10页
The mechanical properties and phase morphologies of cis-1,4-butadiene rubber(BR) blended with polyethylene(PE) at different blend ratios were studied. The tensile test results show that the PE exhibits excellent r... The mechanical properties and phase morphologies of cis-1,4-butadiene rubber(BR) blended with polyethylene(PE) at different blend ratios were studied. The tensile test results show that the PE exhibits excellent reinforcing capabilities towards BR. Blending BR with PE results in a remarkable enhancement of tensile strength, modulus and the elongation at break simultaneously. An increment of tensile strength from 1.11 MPa to 16.26 MPa was achieved by incorporation of 40 wt% PE in the blends. The modulus and elongation at break of 40/60 PE/BR blends are also about 5 times higher than those of the pure BR treated under exactly the same conditions. The tear test indicates that the tear strength also increases with the increase of PE content. It reaches 58.38 MPa for the 40/60 PE/BR blend, which is approximately 10 times higher than that of the pure BR. Morphological study demonstrates that the PE forms elongated microdomains finely dispersed in the BR matrix when its content is over 30 wt%, which corresponds to the remarkably enhanced mechanical properties.According to the results, reinforcement mechanism of PE toward BR dependent on the microstructure has been discussed and two different mechanisms have been proposed. 展开更多
关键词 POLYETHYLENE CIS-1 4-butadiene rubber BLEND Mechanical property MORPHOLOGY
原文传递
Theoretical Interpretation of Conformation Variations of Polydimethylsiloxane Induced by Nanoparticles 被引量:1
7
作者 Zhao-Yang Wei nan-ying ning +2 位作者 Ming Tian Li-Qun Zhang Jian-Guo Mi 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2018年第4期505-513,共9页
There has been controversy as to whether the addition of nanoparticles to a polymer melt causes perturbed chain structure of polymers. In this work, the chain conformations of polydimethylsiloxane(PDMS) with additio... There has been controversy as to whether the addition of nanoparticles to a polymer melt causes perturbed chain structure of polymers. In this work, the chain conformations of polydimethylsiloxane(PDMS) with addition of polyhedral oligomeric silsesquioxane(POSS) nanoparticles have been studied using a classical density functional approach. Under the strong interactions of POSS-PDMS, the radius of gyration of PDMS in the nanocomposites can either increase or decline depending on particle loading. After adding nanoparticles with larger size or weaker interactions, both the increasing and the declining amplitudes can be largely suppressed. The results provide a deep understanding of chain conformation in polymer nanocomposites. 展开更多
关键词 Chain conformation Radius of gyration Polymer nanocomposites Density functional theory
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部