3D printing silicone elastomer has demonstrated great potential in diverse areas such as medical devices,flexible electronics and soft robotics.It is of great value to investigate how to improve the mechanical propert...3D printing silicone elastomer has demonstrated great potential in diverse areas such as medical devices,flexible electronics and soft robotics.It is of great value to investigate how to improve the mechanical properties,including tensile strength and elongation at break of printed parts.In this work,a light curing system that can be applied in silicone elastomer 3D printing is explored,which is composed of vinyl terminated polysiloxane as the macromer and thiol containing polysiloxane as the crosslinking agent,and a chain extension reaction is also introduced into this light curing system via the addition of the chain extender dithiol molecules,and a light curing system accompanied with chain extension is designed and realized based on the thiol-ene click reaction mechanism.After reinforced with silica fillers,the obtained light curing system can endow the light curing silicone elastomer with better mechanical properties under the condition of a lower viscosity of the precursor,the tensile strength and elongation at break can reach 525.5 k Pa and 601%,respectively.This light curing system provides a feasible method to solve the contradiction between the viscosity of the precursor and the mechanical properties of the light curing elastomer in the digital light processing(DLP)3D printing field.展开更多
Methyl vinyl silicone rubber (MVQ)/polypropylene (PP) thermoplastic vulcanizate (TPV) combines the good melt processability, recyclability and sealing performance as well as biosafety, stain and fluid resistance, and ...Methyl vinyl silicone rubber (MVQ)/polypropylene (PP) thermoplastic vulcanizate (TPV) combines the good melt processability, recyclability and sealing performance as well as biosafety, stain and fluid resistance, and thus it is especially suitable in bio-safety areas and wearable electronic devices, etc. Nevertheless, the compatibility between MVQ and PP phases is poor. A big challenge on the compatibilization of MVQ/PP blends is that neither MVQ nor PP contains any reactive groups. In this study, a dual reactive compatibilizer composed of ethylenemethyl acrylate-glycidyl methacrylate terpolymer (EMA-co-GMA) and maleic anhydride grafted polypropylene (PP-g-MAH) was designed for the compatibilization of MVQ/PP blends. During melt blending, a copolymer compatibilizer at the MVQ/PP interface can be formed because of the in situ reaction between EMA-co-GMA and PP-g-MAH. The thermodynamic predict of its compatibilization effect through calculating the spreading coefficient of the in situ formed copolymer indicates that it can well compatibilize MVQ/PP blends. The experimental results show that under the GMA/MAH molar ratio of 0.5/1, the interface thickness largely increase from 102 nm for non-compatibilized blend to 406 nm, and the average size of MVQ dispersed phase largely decreases from 2.3 µm to 0.36 µm, the Tg of the two phases shifts toward each other, the mixing torque and mechanical properties of the blend are increased, all indicating its good compatibilization effect. This study provides a good compatibilizing method for immiscible MVQ/PP blends with no reactive groups in both components for the preparation of high performance MVQ/PP TPVs.展开更多
Because of its softness,wear resistance,biocompatibility,extremely comfortable human touch,thermoplastic vulcanizate(TPV)comprised of silicone rubber(SiR)and thermoplastic polyurethane(TPU)(SiR/TPU TPV)is especially s...Because of its softness,wear resistance,biocompatibility,extremely comfortable human touch,thermoplastic vulcanizate(TPV)comprised of silicone rubber(SiR)and thermoplastic polyurethane(TPU)(SiR/TPU TPV)is especially suitable for wearable intelligent devices.Nevertheless,developing good compatibilizer is still required to prepare high performance SiR/TPU TPV.In this study,three kinds of polyurethane-polysiloxane copolymer(PU-co-PSi)with different contents of polysiloxane segment were selected,and their compatibilization effect on SiR/TPU blends was studied using nanomechanical mapping technique of AFM.The results show that using PU-co-PSi with the highest content of polysiloxane segment(PU-co-HPSi),the interface thickness largely increases,and the average size of SiR dispersed phase largely decreases,indicating its good compatibilization effect.By using PU-co-HPSi as compatibilizer,SiR/TPU TPV with a fine SiR dispersed phase and good mechanical performance were successfully prepared.The mechanism on the compatibilization effect of these PU-co-PSi on SiR/TPU TPVs was revealed.展开更多
The mechanical properties and phase morphologies of cis-1,4-butadiene rubber(BR) blended with polyethylene(PE) at different blend ratios were studied. The tensile test results show that the PE exhibits excellent r...The mechanical properties and phase morphologies of cis-1,4-butadiene rubber(BR) blended with polyethylene(PE) at different blend ratios were studied. The tensile test results show that the PE exhibits excellent reinforcing capabilities towards BR. Blending BR with PE results in a remarkable enhancement of tensile strength, modulus and the elongation at break simultaneously. An increment of tensile strength from 1.11 MPa to 16.26 MPa was achieved by incorporation of 40 wt% PE in the blends. The modulus and elongation at break of 40/60 PE/BR blends are also about 5 times higher than those of the pure BR treated under exactly the same conditions. The tear test indicates that the tear strength also increases with the increase of PE content. It reaches 58.38 MPa for the 40/60 PE/BR blend, which is approximately 10 times higher than that of the pure BR. Morphological study demonstrates that the PE forms elongated microdomains finely dispersed in the BR matrix when its content is over 30 wt%, which corresponds to the remarkably enhanced mechanical properties.According to the results, reinforcement mechanism of PE toward BR dependent on the microstructure has been discussed and two different mechanisms have been proposed.展开更多
There has been controversy as to whether the addition of nanoparticles to a polymer melt causes perturbed chain structure of polymers. In this work, the chain conformations of polydimethylsiloxane(PDMS) with additio...There has been controversy as to whether the addition of nanoparticles to a polymer melt causes perturbed chain structure of polymers. In this work, the chain conformations of polydimethylsiloxane(PDMS) with addition of polyhedral oligomeric silsesquioxane(POSS) nanoparticles have been studied using a classical density functional approach. Under the strong interactions of POSS-PDMS, the radius of gyration of PDMS in the nanocomposites can either increase or decline depending on particle loading. After adding nanoparticles with larger size or weaker interactions, both the increasing and the declining amplitudes can be largely suppressed. The results provide a deep understanding of chain conformation in polymer nanocomposites.展开更多
基金the National Natural Science Foundation of China(Nos.52173054,51903009,51673014 and 51525301)the Fundamental Research Funds for the Central Universities(Nos.buctrc201923 and JD2009)。
文摘3D printing silicone elastomer has demonstrated great potential in diverse areas such as medical devices,flexible electronics and soft robotics.It is of great value to investigate how to improve the mechanical properties,including tensile strength and elongation at break of printed parts.In this work,a light curing system that can be applied in silicone elastomer 3D printing is explored,which is composed of vinyl terminated polysiloxane as the macromer and thiol containing polysiloxane as the crosslinking agent,and a chain extension reaction is also introduced into this light curing system via the addition of the chain extender dithiol molecules,and a light curing system accompanied with chain extension is designed and realized based on the thiol-ene click reaction mechanism.After reinforced with silica fillers,the obtained light curing system can endow the light curing silicone elastomer with better mechanical properties under the condition of a lower viscosity of the precursor,the tensile strength and elongation at break can reach 525.5 k Pa and 601%,respectively.This light curing system provides a feasible method to solve the contradiction between the viscosity of the precursor and the mechanical properties of the light curing elastomer in the digital light processing(DLP)3D printing field.
基金supported by the National Natural Science Foundation of China(No.51525301).
文摘Methyl vinyl silicone rubber (MVQ)/polypropylene (PP) thermoplastic vulcanizate (TPV) combines the good melt processability, recyclability and sealing performance as well as biosafety, stain and fluid resistance, and thus it is especially suitable in bio-safety areas and wearable electronic devices, etc. Nevertheless, the compatibility between MVQ and PP phases is poor. A big challenge on the compatibilization of MVQ/PP blends is that neither MVQ nor PP contains any reactive groups. In this study, a dual reactive compatibilizer composed of ethylenemethyl acrylate-glycidyl methacrylate terpolymer (EMA-co-GMA) and maleic anhydride grafted polypropylene (PP-g-MAH) was designed for the compatibilization of MVQ/PP blends. During melt blending, a copolymer compatibilizer at the MVQ/PP interface can be formed because of the in situ reaction between EMA-co-GMA and PP-g-MAH. The thermodynamic predict of its compatibilization effect through calculating the spreading coefficient of the in situ formed copolymer indicates that it can well compatibilize MVQ/PP blends. The experimental results show that under the GMA/MAH molar ratio of 0.5/1, the interface thickness largely increase from 102 nm for non-compatibilized blend to 406 nm, and the average size of MVQ dispersed phase largely decreases from 2.3 µm to 0.36 µm, the Tg of the two phases shifts toward each other, the mixing torque and mechanical properties of the blend are increased, all indicating its good compatibilization effect. This study provides a good compatibilizing method for immiscible MVQ/PP blends with no reactive groups in both components for the preparation of high performance MVQ/PP TPVs.
基金financially supported by the National Natural Science Foundation of China (Nos. 51525301 and 51903009)the National Key Research & Development Plan (No. 2017YFB0307003)Chinese Scholarship Council for supporting his PhD study in Chimie Paris Tech-PSL Research University, France (No. 202106880002)
文摘Because of its softness,wear resistance,biocompatibility,extremely comfortable human touch,thermoplastic vulcanizate(TPV)comprised of silicone rubber(SiR)and thermoplastic polyurethane(TPU)(SiR/TPU TPV)is especially suitable for wearable intelligent devices.Nevertheless,developing good compatibilizer is still required to prepare high performance SiR/TPU TPV.In this study,three kinds of polyurethane-polysiloxane copolymer(PU-co-PSi)with different contents of polysiloxane segment were selected,and their compatibilization effect on SiR/TPU blends was studied using nanomechanical mapping technique of AFM.The results show that using PU-co-PSi with the highest content of polysiloxane segment(PU-co-HPSi),the interface thickness largely increases,and the average size of SiR dispersed phase largely decreases,indicating its good compatibilization effect.By using PU-co-HPSi as compatibilizer,SiR/TPU TPV with a fine SiR dispersed phase and good mechanical performance were successfully prepared.The mechanism on the compatibilization effect of these PU-co-PSi on SiR/TPU TPVs was revealed.
基金financially supported by the National Natural Science Foundation of China(Nos.51221002 and 21174014)
文摘The mechanical properties and phase morphologies of cis-1,4-butadiene rubber(BR) blended with polyethylene(PE) at different blend ratios were studied. The tensile test results show that the PE exhibits excellent reinforcing capabilities towards BR. Blending BR with PE results in a remarkable enhancement of tensile strength, modulus and the elongation at break simultaneously. An increment of tensile strength from 1.11 MPa to 16.26 MPa was achieved by incorporation of 40 wt% PE in the blends. The modulus and elongation at break of 40/60 PE/BR blends are also about 5 times higher than those of the pure BR treated under exactly the same conditions. The tear test indicates that the tear strength also increases with the increase of PE content. It reaches 58.38 MPa for the 40/60 PE/BR blend, which is approximately 10 times higher than that of the pure BR. Morphological study demonstrates that the PE forms elongated microdomains finely dispersed in the BR matrix when its content is over 30 wt%, which corresponds to the remarkably enhanced mechanical properties.According to the results, reinforcement mechanism of PE toward BR dependent on the microstructure has been discussed and two different mechanisms have been proposed.
基金financial supports from the National Basic Research Program of China (No. 2015CB654700 (2015CB674704))the National Natural Science Foundation of China (Nos. 21476007, 51525301 and 51521062)the CHEMCLOUDCOMPUTING of Beijing University of Chemical Technology
文摘There has been controversy as to whether the addition of nanoparticles to a polymer melt causes perturbed chain structure of polymers. In this work, the chain conformations of polydimethylsiloxane(PDMS) with addition of polyhedral oligomeric silsesquioxane(POSS) nanoparticles have been studied using a classical density functional approach. Under the strong interactions of POSS-PDMS, the radius of gyration of PDMS in the nanocomposites can either increase or decline depending on particle loading. After adding nanoparticles with larger size or weaker interactions, both the increasing and the declining amplitudes can be largely suppressed. The results provide a deep understanding of chain conformation in polymer nanocomposites.