The liver has the ability to reform and regenerate in our body. However, the mechanisms of reformation or regeneration of the liver have not been elucidated. In this study, we propose an analysis model using a Particl...The liver has the ability to reform and regenerate in our body. However, the mechanisms of reformation or regeneration of the liver have not been elucidated. In this study, we propose an analysis model using a Particle Model to elucidate the mechanism of liver formation. The object of analysis is a hepatic lobule, which is the basic component of the liver. First, a 2-dimensional cell proliferation around one blood vessel was modeled. Second, angiogenesis was added and considered. And finally, the model was applied to the hepatic lobule and the 2D formation of the hepatic lobule was revealed. We used experimentally derived parameters such as diffusivity, oxygen concentration, and oxygen consumption of a cell. The model will be expected to facilitate in developing tissue-engineered liver using regenerative medicine technology.展开更多
文摘The liver has the ability to reform and regenerate in our body. However, the mechanisms of reformation or regeneration of the liver have not been elucidated. In this study, we propose an analysis model using a Particle Model to elucidate the mechanism of liver formation. The object of analysis is a hepatic lobule, which is the basic component of the liver. First, a 2-dimensional cell proliferation around one blood vessel was modeled. Second, angiogenesis was added and considered. And finally, the model was applied to the hepatic lobule and the 2D formation of the hepatic lobule was revealed. We used experimentally derived parameters such as diffusivity, oxygen concentration, and oxygen consumption of a cell. The model will be expected to facilitate in developing tissue-engineered liver using regenerative medicine technology.