Organic cation and halide anion defects are omnipresent in the perovskite films,which will destroy perovskite electronic structure and downgrade the properties of devices.Defect passivation in halide perovskites is cr...Organic cation and halide anion defects are omnipresent in the perovskite films,which will destroy perovskite electronic structure and downgrade the properties of devices.Defect passivation in halide perovskites is crucial to the application of solar cells.Herein,tiny amounts of trivalent rhodium ion incorporation can help the nucleation of perovskite grain and passivate the defects in the grain boundaries,which can improve efficiency and stability of perovskite solar cells.Through first-principle calculations,rhodium ion incorporation into the perovskite structure can induce ordered arrangement and tune bandgap.In experiment,rhodium ion incorporation with perovskite can contribute to preparing larger crystalline and uniform film,reducing trap-state density and enlarging charge carrier lifetime.After optimizing the content of 1% rhodium,the devices achieved an efficiency up to 20.71% without obvious hysteresis,from 19.09% of that pristine perovskite.In addition,the unencapsulated solar cells maintain 92% of its initial efficiency after 500 h in dry air.This work highlights the advantages of trivalent rhodium ion incorporation in the characteristics of perovskite solar cells,which will promote the future industrial application.展开更多
Enhancement of open-circuit voltage(Voc)is an effective way to improve power conversion efficiency(PCE)of the perovskite solar cells(PSCs).Theoretically,work function engineering of TiO2 electron transport layer can r...Enhancement of open-circuit voltage(Voc)is an effective way to improve power conversion efficiency(PCE)of the perovskite solar cells(PSCs).Theoretically,work function engineering of TiO2 electron transport layer can reduce both the loss of Voc and current hysteresis in PSCs.In this work,two-dimensional g-C_(3)N_(4) nanosheets were adopted to modify the compact TiO2 layers in planar PSCs,which can finely tune the work function(WF)and further improve the energy level alignment at the interface to enhance the Voc and diminish the hysteresis.Meanwhile,the quality of perovskite films and charge transfer of the devices were improved by g-C_(3)N_(4) nanosheets.Therefore,the PCE of the planar PSCs was champed to 19.55%without obvious hysteresis compared with the initial 15.81%,mainly owing to the remarkable improvement of VOC from 1.01 to 1.11 V.In addition,the stability of the devices was obviously improved.The results demonstrate an effective strategy of W_(F) engineering to enhance Voc and diminish hysteresis phenomenon for improving the performance of PSCs.展开更多
基金supported by the Ministry of Education of China(IRT1148)the National Natural Science Foundation of China(U1732126,11804166,51602161,51372119)+3 种基金China Postdoctoral Science Foundation(2018M630587)the Priority Academic Program Development of Jiangsu Higher Education Institutions(YX03001)Guangdong Science and Technology Program(2017B030314002)Graduate Research Innovation Fund of Jiangsu Province(KYCX18_0863,KYCX18_0847,KYCX18_0869)。
文摘Organic cation and halide anion defects are omnipresent in the perovskite films,which will destroy perovskite electronic structure and downgrade the properties of devices.Defect passivation in halide perovskites is crucial to the application of solar cells.Herein,tiny amounts of trivalent rhodium ion incorporation can help the nucleation of perovskite grain and passivate the defects in the grain boundaries,which can improve efficiency and stability of perovskite solar cells.Through first-principle calculations,rhodium ion incorporation into the perovskite structure can induce ordered arrangement and tune bandgap.In experiment,rhodium ion incorporation with perovskite can contribute to preparing larger crystalline and uniform film,reducing trap-state density and enlarging charge carrier lifetime.After optimizing the content of 1% rhodium,the devices achieved an efficiency up to 20.71% without obvious hysteresis,from 19.09% of that pristine perovskite.In addition,the unencapsulated solar cells maintain 92% of its initial efficiency after 500 h in dry air.This work highlights the advantages of trivalent rhodium ion incorporation in the characteristics of perovskite solar cells,which will promote the future industrial application.
基金This work was supported by the National Natural Science Foundation of China(Nos.11804166 and 51372119)the China Postdoctoral Science Foundation(No.2018M630587).
文摘Enhancement of open-circuit voltage(Voc)is an effective way to improve power conversion efficiency(PCE)of the perovskite solar cells(PSCs).Theoretically,work function engineering of TiO2 electron transport layer can reduce both the loss of Voc and current hysteresis in PSCs.In this work,two-dimensional g-C_(3)N_(4) nanosheets were adopted to modify the compact TiO2 layers in planar PSCs,which can finely tune the work function(WF)and further improve the energy level alignment at the interface to enhance the Voc and diminish the hysteresis.Meanwhile,the quality of perovskite films and charge transfer of the devices were improved by g-C_(3)N_(4) nanosheets.Therefore,the PCE of the planar PSCs was champed to 19.55%without obvious hysteresis compared with the initial 15.81%,mainly owing to the remarkable improvement of VOC from 1.01 to 1.11 V.In addition,the stability of the devices was obviously improved.The results demonstrate an effective strategy of W_(F) engineering to enhance Voc and diminish hysteresis phenomenon for improving the performance of PSCs.