Comprehensive Summary,Polymethyl methacrylate(PMMA)has been widely applied in diverse fields such as medicine and engineering materials due to its good hydrophilicity and biocompatibility.However,another term for PMMA...Comprehensive Summary,Polymethyl methacrylate(PMMA)has been widely applied in diverse fields such as medicine and engineering materials due to its good hydrophilicity and biocompatibility.However,another term for PMMA,Plexiglas,means that it is water insoluble.These features of PMMA are valuable but seem paradoxical.To explore the underlying mechanism of the paradoxical properties,the interactions between PMMA and water have been investigated by atomic force microscopy(AFM)-based single-molecule force spectroscopy(SMFS).The single-chain elasticity of PMMA obtained in aqueous solutions is significantly different from that obtained in non-aqueous environments,implying that PMMA can form hydrogen bonds with water molecules.展开更多
基金supported by the National Natural Science Foundation of China(22273079)the Natural Science Foundation of Sichuan Province(2022NSFSC1204)the Central Government Guiding Local Science and Technology Development Project of Sichuan Province(2022ZYD0043).
文摘Comprehensive Summary,Polymethyl methacrylate(PMMA)has been widely applied in diverse fields such as medicine and engineering materials due to its good hydrophilicity and biocompatibility.However,another term for PMMA,Plexiglas,means that it is water insoluble.These features of PMMA are valuable but seem paradoxical.To explore the underlying mechanism of the paradoxical properties,the interactions between PMMA and water have been investigated by atomic force microscopy(AFM)-based single-molecule force spectroscopy(SMFS).The single-chain elasticity of PMMA obtained in aqueous solutions is significantly different from that obtained in non-aqueous environments,implying that PMMA can form hydrogen bonds with water molecules.