期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effects of processing parameters on fabrication defects,microstructure and mechanical properties of additive manufactured Mg–Nd–Zn–Zr alloy by selective laser melting process
1
作者 Wenyu Xu Penghuai Fu +4 位作者 nanqing wang Lei Yang Liming Peng Juan Chen Wenjiang Ding 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2249-2266,共18页
Mg–3Nd–0.2Zn–0.4Zr(NZ30K,wt.%)alloy is a new kind of high-performance metallic biomaterial.The combination of the NZ30K Magnesium(Mg)alloy and selective laser melting(SLM)process seems to be an ideal solution to pr... Mg–3Nd–0.2Zn–0.4Zr(NZ30K,wt.%)alloy is a new kind of high-performance metallic biomaterial.The combination of the NZ30K Magnesium(Mg)alloy and selective laser melting(SLM)process seems to be an ideal solution to produce porous Mg degradable implants.However,the microstructure evolution and mechanical properties of the SLMed NZ30K Mg alloy were not yet studied systematically.Therefore,the fabrication defects,microstructure,and mechanical properties of the SLMed NZ30K alloy under different processing parameters were investigated.The results show that there are two types of fabrication defects in the SLMed NZ30K alloy,gas pores and unfused defects.With the increase of the laser energy density,the porosity sharply decreases to the minimum first and then slightly increases.The minimum porosity is 0.49±0.18%.While the microstructure varies from the large grains with lamellar structure inside under low laser energy density,to the large grains with lamellar structure inside&the equiaxed grains&the columnar grains under middle laser energy density,and further to the fine equiaxed grains&the columnar grains under high laser energy density.The lamellar structure in the large grain is a newly observed microstructure for the NZ30K Mg alloy.Higher laser energy density leads to finer grains,which enhance all the yield strength(YS),ultimate tensile strength(UTS)and elongation,and the best comprehensive mechanical properties obtained are YS of 266±2.1 MPa,UTS of 296±5.2 MPa,with an elongation of 4.9±0.68%.The SLMed NZ30K Mg alloy with a bimodal-grained structure consisting of fine equiaxed grains and coarser columnar grains has better elongation and a yield drop phenomenon. 展开更多
关键词 Selective laser melting Mg alloy Processing parameter Lamellar structure Bimodal-grained structure
下载PDF
Challenges and Solutions for the Additive Manufacturing of H) Biodegradable Magnesium Implants 被引量:17
2
作者 Yinchuan wang Penghuai Fu +5 位作者 nanqing wang Liming Peng Bin Kang Hui Zeng Guangyin Yuan Wenjiang Ding 《Engineering》 SCIE EI 2020年第11期1267-1275,共9页
Due to their capability of fabricating geometrically complex structures,additive manufacturing(AM)techniques have provided unprecedented opportunities to produce biodegradable metallic implants—especially using Mg al... Due to their capability of fabricating geometrically complex structures,additive manufacturing(AM)techniques have provided unprecedented opportunities to produce biodegradable metallic implants—especially using Mg alloys,which exhibit appropriate mechanical properties and outstanding biocompatibility.However,many challenges hinder the fabrication of AM-processed biodegradable Mg-based implants,such as the difficulty of Mg powder preparation,powder splash,and crack formation during the AM process.In the present work,the challenges of AM-processed Mg components are analyzed and solutions to these challenges are proposed.A novel Mg-based alloy(Mg-Nd-Zn-Zr alloy,JDBM)powder with a smooth surface and good roundness was first synthesized successfully,and the AM parameters for Mg-based alloys were optimized.Based on the optimized parameters,porous JDBM scaffolds with three different architectures(biomimetic,diamond,and gyroid)were then fabricated by selective laser melting(SLM),and their mechanical properties and degradation behavior were evaluated.Finally,the gyroid scaffolds with the best performance were selected for dicalcium phosphate dihydrate(DCPD)coating treatment,which greatly suppressed the degradation rate and increased the cytocompatibility,indicating a promising prospect for clinical application as bone tissue engineering scaffolds. 展开更多
关键词 Additive manufacturing Selective laser melting Biodegradable Mg alloys Tissue engineering scaffolds Surface treatment
下载PDF
Additively manufactured biodegradable porous magnesium implants for elimination of implant-related infections:An in vitro and in vivo study 被引量:11
3
作者 Kai Xie nanqing wang +11 位作者 Yu Guo Shuang Zhao Jia Tan Lei wang Guoyuan Li Junxiang Wu Yangzi Yang Wenyu Xu Juan Chen Wenbo Jiang Penghuai Fu Yongqiang Hao 《Bioactive Materials》 SCIE 2022年第2期140-152,共13页
Magnesium(Mg)alloys that have both antibacterial and osteogenic properties are suitable candidates for orthopedic implants.However,the fabrication of ideal Mg implants suitable for bone repair remains challenging beca... Magnesium(Mg)alloys that have both antibacterial and osteogenic properties are suitable candidates for orthopedic implants.However,the fabrication of ideal Mg implants suitable for bone repair remains challenging because it requires implants with interconnected pore structures and personalized geometric shapes.In this study,we fabricated a porous 3D-printed Mg-Nd-Zn-Zr(denoted as JDBM)implant with suitable mechanical properties using selective laser melting technology.The 3D-printed JDBM implant exhibited cytocompatibility in MC3T3-E1 and RAW267.4 cells and excellent osteoinductivity in vitro.Furthermore,the implant demonstrated excellent antibacterial ratios of 90.0% and 92.1% for methicillin-resistant S.aureus(MRSA)and Escherichia coli,respectively.The 3D-printed JDBM implant prevented MRSA-induced implant-related infection in a rabbit model and showed good in vivo biocompatibility based on the results of histological evaluation,blood tests,and Mg2+deposition detection.In addition,enhanced inflammatory response and TNF-α secretion were observed at the bone-implant interface of the 3D-printed JDBM implants during the early implantation stage.The high Mg^(2+)environment produced by the degradation of 3D-printed JDBM implants could promote M1 phenotype of macrophages(Tnf,iNOS,Ccl3,Ccl4,Ccl5,Cxcl10,and Cxcl2),and enhance the phagocytic ability of macrophages.The enhanced immunoregulatory effect generated by relatively fast Mg^(2+)release and implant degradation during the early implantation stage is a potential antibacterial mechanism of Mg-based implant.Our findings indicate that 3D-printed porous JDBM implants,having both antibacterial property and osteoinductivity,hold potential for future orthopedic applications. 展开更多
关键词 Magnesium implants 3D printing Implant-related infections Antibacterial activity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部