An algorithm is proposed for scheduling dependent tasks in time-varying heterogeneous multiprocessor systems, in which computational power and links between processors are allowed to change over time. Link contention ...An algorithm is proposed for scheduling dependent tasks in time-varying heterogeneous multiprocessor systems, in which computational power and links between processors are allowed to change over time. Link contention is considered in the multiprocessor scheduling problem. A linear switching-state space-modeling paradigm is introduced to enable theoretical analysis from a system engineering perspective. Theoretical analysis of this model shows its robustness against changes in processing power and link failure. The proposed algorithm uses a fuzzy decision-making procedure to handle changes in the multiprocessor system. The efficiency of the proposed algorithm is illustrated by several random experiments and comparison against a recent benchmark approach. The results show up to 18% average improvement in makespan, especially for larger scale systems.展开更多
This paper addresses the problem of approximating parameter dependent nonlinear systems in a unified framework. This modeling has been presented for the first time in the form of parameter dependent piecewise affine s...This paper addresses the problem of approximating parameter dependent nonlinear systems in a unified framework. This modeling has been presented for the first time in the form of parameter dependent piecewise affine systems. In this model, the matrices and vectors defining piecewise affine systems are affine functions of parameters. Modeling of the system is done based on distinct spaces of state and parameter, and the operating regions are partitioned into the sections that we call 'multiplied simplices'. It is proven that this method of partitioning leads to less complexity of the approximated model compared with the few existing methods for modeling of parameter dependent nonlinear systems. It is also proven that the approximation is continuous for continuous functions and can be arbitrarily close to the original one. Next, the approximation error is calculated for a special class of parameter dependent nonlinear systems. For this class of systems, by solving an optimization problem, the operating regions can be partitioned into the minimum number of hyper-rectangles such that the modeling error does not exceed a specified value. This modeling method can be the first step towards analyzing the parameter dependent nonlinear systems with a uniform method.展开更多
This paper presents a new approach for solving a class of infinite horizon nonlinear optimal control problems (OCPs).In this approach,a nonlinear two-point boundary value problem (TPBVP),derived from Pontryagin's ...This paper presents a new approach for solving a class of infinite horizon nonlinear optimal control problems (OCPs).In this approach,a nonlinear two-point boundary value problem (TPBVP),derived from Pontryagin's maximum principle,is transformed into a sequence of linear time-invariant TPBVPs.Solving the latter problems in a recursive manner provides the optimal control law and the optimal trajectory in the form of uniformly convergent series.Hence,to obtain the optimal solution,only the techniques for solving linear ordinary differential equations are employed.An efficient algorithm is also presented,which has low computational complexity and a fast convergence rate.Just a few iterations are required to find an accurate enough suboptimal trajectory-control pair for the nonlinear OCP.The results not only demonstrate the efficiency,simplicity,and high accuracy of the suggested approach,but also indicate its effectiveness in practical use.展开更多
The original version of this article unfortunately contained a mistake. The affiliation of the first author was incorrect. The correct affiliation is: Department of Computer Engineering, Quchan Branch, Islamic Azad Un...The original version of this article unfortunately contained a mistake. The affiliation of the first author was incorrect. The correct affiliation is: Department of Computer Engineering, Quchan Branch, Islamic Azad University, Quchan, Iran.展开更多
文摘An algorithm is proposed for scheduling dependent tasks in time-varying heterogeneous multiprocessor systems, in which computational power and links between processors are allowed to change over time. Link contention is considered in the multiprocessor scheduling problem. A linear switching-state space-modeling paradigm is introduced to enable theoretical analysis from a system engineering perspective. Theoretical analysis of this model shows its robustness against changes in processing power and link failure. The proposed algorithm uses a fuzzy decision-making procedure to handle changes in the multiprocessor system. The efficiency of the proposed algorithm is illustrated by several random experiments and comparison against a recent benchmark approach. The results show up to 18% average improvement in makespan, especially for larger scale systems.
文摘This paper addresses the problem of approximating parameter dependent nonlinear systems in a unified framework. This modeling has been presented for the first time in the form of parameter dependent piecewise affine systems. In this model, the matrices and vectors defining piecewise affine systems are affine functions of parameters. Modeling of the system is done based on distinct spaces of state and parameter, and the operating regions are partitioned into the sections that we call 'multiplied simplices'. It is proven that this method of partitioning leads to less complexity of the approximated model compared with the few existing methods for modeling of parameter dependent nonlinear systems. It is also proven that the approximation is continuous for continuous functions and can be arbitrarily close to the original one. Next, the approximation error is calculated for a special class of parameter dependent nonlinear systems. For this class of systems, by solving an optimization problem, the operating regions can be partitioned into the minimum number of hyper-rectangles such that the modeling error does not exceed a specified value. This modeling method can be the first step towards analyzing the parameter dependent nonlinear systems with a uniform method.
文摘This paper presents a new approach for solving a class of infinite horizon nonlinear optimal control problems (OCPs).In this approach,a nonlinear two-point boundary value problem (TPBVP),derived from Pontryagin's maximum principle,is transformed into a sequence of linear time-invariant TPBVPs.Solving the latter problems in a recursive manner provides the optimal control law and the optimal trajectory in the form of uniformly convergent series.Hence,to obtain the optimal solution,only the techniques for solving linear ordinary differential equations are employed.An efficient algorithm is also presented,which has low computational complexity and a fast convergence rate.Just a few iterations are required to find an accurate enough suboptimal trajectory-control pair for the nonlinear OCP.The results not only demonstrate the efficiency,simplicity,and high accuracy of the suggested approach,but also indicate its effectiveness in practical use.
文摘The original version of this article unfortunately contained a mistake. The affiliation of the first author was incorrect. The correct affiliation is: Department of Computer Engineering, Quchan Branch, Islamic Azad University, Quchan, Iran.