In the current study, the hybrid effect of a corona discharge and γ-alumina supported Ni catalysts in CO2 reforming of methane is investigated. The study includes both purely catalytic operation in the temperature ra...In the current study, the hybrid effect of a corona discharge and γ-alumina supported Ni catalysts in CO2 reforming of methane is investigated. The study includes both purely catalytic operation in the temperature range of 923-1023 K, and hybrid catalytic-plasma operation of DC corona discharge reactor at room temperature and ambient pressure. The effect of feed flow rate, discharge power and Ni/γ-Al2O3 catalysts are studied. When CH4/CO2 ratio in the feed is 1/2, the syngas of low Ha/CO ratio at about 0.56 is obtained, which is a potential feedstock for synthesis of liquid hydrocarbons. Although Ni catalyst is only active above 573 K, presence of Ni catalysts in the cold corona plasma reactor (T≤523 K) shows promising increase in the conversions of methane and carbon dioxide. When Ni catalysts are used in the plasma reaction, H2/CO ratios in the products are slightly modified, selectivity to CO increases whereas fewer by-products such as hydrocarbons and oxygenates are formed.展开更多
基金supported by the National Iranian Oil Company (N.I.O.C.)
文摘In the current study, the hybrid effect of a corona discharge and γ-alumina supported Ni catalysts in CO2 reforming of methane is investigated. The study includes both purely catalytic operation in the temperature range of 923-1023 K, and hybrid catalytic-plasma operation of DC corona discharge reactor at room temperature and ambient pressure. The effect of feed flow rate, discharge power and Ni/γ-Al2O3 catalysts are studied. When CH4/CO2 ratio in the feed is 1/2, the syngas of low Ha/CO ratio at about 0.56 is obtained, which is a potential feedstock for synthesis of liquid hydrocarbons. Although Ni catalyst is only active above 573 K, presence of Ni catalysts in the cold corona plasma reactor (T≤523 K) shows promising increase in the conversions of methane and carbon dioxide. When Ni catalysts are used in the plasma reaction, H2/CO ratios in the products are slightly modified, selectivity to CO increases whereas fewer by-products such as hydrocarbons and oxygenates are formed.