The effect of ball scribing on iron loss of conventional grain-oriented ( CGO) and high-permeability grain-oriented ( HGO) electrical steel was investigated. In this paper,ball scribing was achieved by self- designed ...The effect of ball scribing on iron loss of conventional grain-oriented ( CGO) and high-permeability grain-oriented ( HGO) electrical steel was investigated. In this paper,ball scribing was achieved by self- designed ball scribing instrument and a computer-controlled system capable of providing high accuracy and automatic measurements was developed for the magnetisation and measurement at high and low flux densities. The results showed that after ball scribing,iron loss of two types of steel ( C711 and H668 ) apparently decreases ( 5. 5% and 8. 2% respectively after 16mm scribing at 1. 2T) ,and at high and low flux densities, CGO and HGO electrical steel performs differently. Through the formation and development of free magnetic poles and secondary magnetic domains due to compressive stress,primary magnetic domain spacing of grain- oriented electrical steel becomes smaller,which reflects as a reduction of iron loss in the macroscopic magnetic properties. Through iron loss formula derivation,the effect of domain refinement on grain-oriented electrical steel was also interpreted.展开更多
Effect of ball scribing on magnetic Barkhausen noise (MBN) of conventional grain-oriented (CGO) and high- permeability grain-oriented (HGO) electrical steel was investigated. The results showed that after ball s...Effect of ball scribing on magnetic Barkhausen noise (MBN) of conventional grain-oriented (CGO) and high- permeability grain-oriented (HGO) electrical steel was investigated. The results showed that after ball scribing, root mean square of MBN (MBNrms) of CGO electrical steel increased 9.8% with 4 mm scribing spacing at 1.2 T, and that of HGO electrical steel apparently decreased 17.3% with 16 mm scribing spacing at 1.2 T. Through the formation and development of free magnetic poles and secondary magnetic domains due to compressive stress, primary magnetic domain space of grain-oriented electrical steel becomes smaller, which reflects as a variation of MBN in the macroscopic magnetic properties. Through correlation formula derivation of MBNrms and equilibrium distance between domain walls, effect of domain refinement on grain-oriented electrical steel was also interpreted, and optimum equilibrium distance between domain walls was determined.展开更多
基金Sponsored by the National Natural Science Foundation of China (Grant No. 51174057 and 51274062)National High Technology Research and Development Program (Grant No. 2012AA03A503)
文摘The effect of ball scribing on iron loss of conventional grain-oriented ( CGO) and high-permeability grain-oriented ( HGO) electrical steel was investigated. In this paper,ball scribing was achieved by self- designed ball scribing instrument and a computer-controlled system capable of providing high accuracy and automatic measurements was developed for the magnetisation and measurement at high and low flux densities. The results showed that after ball scribing,iron loss of two types of steel ( C711 and H668 ) apparently decreases ( 5. 5% and 8. 2% respectively after 16mm scribing at 1. 2T) ,and at high and low flux densities, CGO and HGO electrical steel performs differently. Through the formation and development of free magnetic poles and secondary magnetic domains due to compressive stress,primary magnetic domain spacing of grain- oriented electrical steel becomes smaller,which reflects as a reduction of iron loss in the macroscopic magnetic properties. Through iron loss formula derivation,the effect of domain refinement on grain-oriented electrical steel was also interpreted.
基金The financial support of the National Natural Science Foundation of China(Nos.51174057 and 51274062)the National High Technology Research and Development Program (No.2012AA03A503)
文摘Effect of ball scribing on magnetic Barkhausen noise (MBN) of conventional grain-oriented (CGO) and high- permeability grain-oriented (HGO) electrical steel was investigated. The results showed that after ball scribing, root mean square of MBN (MBNrms) of CGO electrical steel increased 9.8% with 4 mm scribing spacing at 1.2 T, and that of HGO electrical steel apparently decreased 17.3% with 16 mm scribing spacing at 1.2 T. Through the formation and development of free magnetic poles and secondary magnetic domains due to compressive stress, primary magnetic domain space of grain-oriented electrical steel becomes smaller, which reflects as a variation of MBN in the macroscopic magnetic properties. Through correlation formula derivation of MBNrms and equilibrium distance between domain walls, effect of domain refinement on grain-oriented electrical steel was also interpreted, and optimum equilibrium distance between domain walls was determined.