期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Augmenting IoT Intrusion Detection System Performance Using Deep Neural Network
1
作者 nasir sayed Muhammad Shoaib +3 位作者 Waqas Ahmed Sultan Noman Qasem Abdullah M.Albarrak Faisal Saeed 《Computers, Materials & Continua》 SCIE EI 2023年第1期1351-1374,共24页
Due to their low power consumption and limited computing power,Internet of Things(IoT)devices are difficult to secure.Moreover,the rapid growth of IoT devices in homes increases the risk of cyber-attacks.Intrusion det... Due to their low power consumption and limited computing power,Internet of Things(IoT)devices are difficult to secure.Moreover,the rapid growth of IoT devices in homes increases the risk of cyber-attacks.Intrusion detection systems(IDS)are commonly employed to prevent cyberattacks.These systems detect incoming attacks and instantly notify users to allow for the implementation of appropriate countermeasures.Attempts have been made in the past to detect new attacks using machine learning and deep learning techniques,however,these efforts have been unsuccessful.In this paper,we propose two deep learning models to automatically detect various types of intrusion attacks in IoT networks.Specifically,we experimentally evaluate the use of two Convolutional Neural Networks(CNN)to detect nine distinct types of attacks listed in the NF-UNSW-NB15-v2 dataset.To accomplish this goal,the network stream data were initially converted to twodimensional images,which were then used to train the neural network models.We also propose two baseline models to demonstrate the performance of the proposed models.Generally,both models achieve high accuracy in detecting the majority of these nine attacks. 展开更多
关键词 Internet of things intrusion detection system deep learning convolutional neural network supervised learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部