A new prototype and simple low speed counter current chromatography (LSCCC) has been fabricated and a laboratory work has been carried out for rapid and continuous removal of methyl red from wastewater using xylene as...A new prototype and simple low speed counter current chromatography (LSCCC) has been fabricated and a laboratory work has been carried out for rapid and continuous removal of methyl red from wastewater using xylene as an extractant. The distribution ratio (D) and percentage of recoveries were calculated. The optimum concentration for extraction of methyl red was in the range of 2 × 10<sup>-</sup><sup>4</sup> to 8 × 10<sup>-</sup><sup>4</sup> mol·L<sup>-</sup><sup>1</sup>. Maximum extraction achieved at pH range of 2 to 4.5. Various dye concentrations and solvent effects were studied to optimized conditions. It was shown that when the ratio of the organic phase to aqueous phase increased to more than 3:1, the striping efficiency decreased sharply. The experiments were carried out for 5 times and the highest extraction achieved was 99.8 per cent by two-solvent system LSCCC in just 5 minutes. Real wastewater samples were analyzed and the efficiency of the technique was compared with liquid-liquid extraction (LLE). In practice it was shown that although both techniques are rapid, the efficiency of the LSCCC is much better than LLE.展开更多
文摘A new prototype and simple low speed counter current chromatography (LSCCC) has been fabricated and a laboratory work has been carried out for rapid and continuous removal of methyl red from wastewater using xylene as an extractant. The distribution ratio (D) and percentage of recoveries were calculated. The optimum concentration for extraction of methyl red was in the range of 2 × 10<sup>-</sup><sup>4</sup> to 8 × 10<sup>-</sup><sup>4</sup> mol·L<sup>-</sup><sup>1</sup>. Maximum extraction achieved at pH range of 2 to 4.5. Various dye concentrations and solvent effects were studied to optimized conditions. It was shown that when the ratio of the organic phase to aqueous phase increased to more than 3:1, the striping efficiency decreased sharply. The experiments were carried out for 5 times and the highest extraction achieved was 99.8 per cent by two-solvent system LSCCC in just 5 minutes. Real wastewater samples were analyzed and the efficiency of the technique was compared with liquid-liquid extraction (LLE). In practice it was shown that although both techniques are rapid, the efficiency of the LSCCC is much better than LLE.