期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Identification of genes involved in the formation of soluble dietary fiber in winter rye grain and their expression in cultivars with different viscosities of wholemeal water extract
1
作者 Liudmila V.Kozlova Alsu R.Nazipova +7 位作者 Oleg V.Gorshkov Liliya F.Gilmullina Olga V.Sautkina natalia v.petrova Oksana I.Trofimova Sergey N.Ponomarev Mira L Ponomareva Tatyana A.Gorshkova 《The Crop Journal》 SCIE CSCD 2022年第2期532-549,共18页
The grain of rye(Secale cereale L.) used for baking contains a large amount of non-starch polysaccharides,making it an excellent component of functional foods. But rye grain intended for alcohol production and forage ... The grain of rye(Secale cereale L.) used for baking contains a large amount of non-starch polysaccharides,making it an excellent component of functional foods. But rye grain intended for alcohol production and forage use should have a reduced content of these polysaccharides. A comprehensive parameter that can predict the best field of application for winter rye grain is the viscosity of its wholemeal water extract.However, our understanding of the genetic background underlying this key trait and associated features of rye grain is poor. By analyzing six Russian winter rye cultivars, we identified the most contrasting forms and characterized the peculiarities of their water-soluble carbohydrates capable of influencing the viscosity of water extracts. Then, using phylogenetic and transcriptomic analyses, we identified in the rye genome many genes encoding putative glycosyltransferases and glycosylhydrolases responsible for the synthesis and degradation of arabinoxylans, mixed-linkage glucans, cellulose, and some other polysaccharides. We determined the dynamics of m RNA abundance for these genes at three stages of kernel development. Comparisons of gene expression levels in two contrasting cultivars revealed specific members of multigene families that may serve as promising targets for manipulating non-starch polysaccharide content in rye grain. High-viscosity cultivars were characterized by up-regulation of many glycosyltransferases involved in the biosynthesis of arabinoxylans and other cell-wall polysaccharides,whereas low-viscosity cultivars showed up-regulation of several genes encoding polysaccharidedegrading enzymes. 展开更多
关键词 Rye(Secale cereale) Kernel development ARABINOXYLAN Mixed-linkage glucan Viscosity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部