期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Spectral square moments of a resonance sum for Maass forms 被引量:2
1
作者 nathan salazar Yangbo YE 《Frontiers of Mathematics in China》 SCIE CSCD 2017年第5期1183-1200,共18页
Let f be a Maass cusp form for Г0(N) with Fourier coefficients 1 k2. λf(n) and Laplace eigenvalue 1/4 +k2 For real α≠0 and β 〉 0, consider the sum Sx(f; α,β) = ∑n λf(n)e(αnβ)φ(n/X), where ... Let f be a Maass cusp form for Г0(N) with Fourier coefficients 1 k2. λf(n) and Laplace eigenvalue 1/4 +k2 For real α≠0 and β 〉 0, consider the sum Sx(f; α,β) = ∑n λf(n)e(αnβ)φ(n/X), where φ is a smooth function of compact support. We prove bounds for the second spectral moment of Sx (f;α, β), with the eigenvalue tending towards infinity. When the eigenvalue is sufficiently large, we obtain an average bound for this sum in terms of X. This implies that if f has its eigenvalue beyond X1/2+ε, the standard resonance main term for Sx(f; ±2√q 1/2), q ∈Z+, cannot appear in general. The method is adopted from proofs of subconvexity bounds for Rankin-Selberg L-functions for GL(2) × GL(2). It contains in particular a proof of an asymptotic expansion of a well-known oscillatory integral with an enlarged range of Kε≤ L≤ K1-ε. The same bounds can be proved in a similar way for holomorphie cusp forms. 展开更多
关键词 Cusp form Maass form Fourier coefficient of cusp form Kuznetsovtrace formula resonance sum first derivative test weighted stationary phase
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部