Agricultural areas of land are deteriorating every day owing to population increase, rapid urbanization, and industrialization. To feed today’s huge populations, increased crop production is required from smaller are...Agricultural areas of land are deteriorating every day owing to population increase, rapid urbanization, and industrialization. To feed today’s huge populations, increased crop production is required from smaller areas, which warrants the continuous application of high doses of inorganic fertilizers to agricultural land. These cause damage to soil health and, therefore, nutrient imbalance conditions in arable soils. Under these conditions, the benefits of microbial inoculants (such as Actinobacteria) as replacements for harmful chemicals and promoting ecofriendly sustainable farming practices have been made clear through recent technological advances. There are multifunctional traits involved in the production of different types of bioactive compounds responsible for plant growth promotion, and the biocontrol of phytopathogens has reduced the use of chemical fertilizers and pesticides. There are some well-known groups of nitrogen-fixing Actinobacteria, such as Frankia, which undergo mutualism with plants and offer enhanced symbiotic trade-offs.In addition to nitrogen fixation, increasing availability of major plant nutrients in soil due to the solubilization of immobilized forms of phosphorus and potassium compounds, production of phytohormones, such as indole-3-acetic acid, indole-3-pyruvic acid, gibberellins, and cytokinins, improving organic matter decomposition by releasing cellulases, xylanase, glucanases, lipases, and proteases, and suppression of soil-borne pathogens by the production of siderophores, ammonia, hydrogen cyanide, and chitinase are important features of Actinobacteria useful for combating biotic and abiotic stresses in plants.The positive influence of Actinobacteria on soil fertility and plant health has motivated us to compile this review of important findings associated with sustaining plant productivity in the long run.展开更多
文摘Agricultural areas of land are deteriorating every day owing to population increase, rapid urbanization, and industrialization. To feed today’s huge populations, increased crop production is required from smaller areas, which warrants the continuous application of high doses of inorganic fertilizers to agricultural land. These cause damage to soil health and, therefore, nutrient imbalance conditions in arable soils. Under these conditions, the benefits of microbial inoculants (such as Actinobacteria) as replacements for harmful chemicals and promoting ecofriendly sustainable farming practices have been made clear through recent technological advances. There are multifunctional traits involved in the production of different types of bioactive compounds responsible for plant growth promotion, and the biocontrol of phytopathogens has reduced the use of chemical fertilizers and pesticides. There are some well-known groups of nitrogen-fixing Actinobacteria, such as Frankia, which undergo mutualism with plants and offer enhanced symbiotic trade-offs.In addition to nitrogen fixation, increasing availability of major plant nutrients in soil due to the solubilization of immobilized forms of phosphorus and potassium compounds, production of phytohormones, such as indole-3-acetic acid, indole-3-pyruvic acid, gibberellins, and cytokinins, improving organic matter decomposition by releasing cellulases, xylanase, glucanases, lipases, and proteases, and suppression of soil-borne pathogens by the production of siderophores, ammonia, hydrogen cyanide, and chitinase are important features of Actinobacteria useful for combating biotic and abiotic stresses in plants.The positive influence of Actinobacteria on soil fertility and plant health has motivated us to compile this review of important findings associated with sustaining plant productivity in the long run.