This study focuses on identifying the factors under which mixed microbial seeds assist bio-chemical denitrification when Scrap Iron Filings(SIF)are used as electron donors and adsorbents in low C/N ratio waters.Batch ...This study focuses on identifying the factors under which mixed microbial seeds assist bio-chemical denitrification when Scrap Iron Filings(SIF)are used as electron donors and adsorbents in low C/N ratio waters.Batch studies were conducted in abiotic and biotic reactors containing fresh and aged SIF under different dissolved oxygen concentrations with NO_(3)^(-)−N and/or PO_(4)^(3−)influent(s)and their nitrate/phosphate removal and by-product formations were studied.Batch reactors were seeded with a homogenized mixed microbial inoculum procured from natural sludges which were enriched over 6 months under denitrifying conditions in the presence of SIF.Results indicated that when influent containing 40 mg/L of NO_(3)^(-)−N was treated with 5 g SIF,79.9%nitrate reduction was observed in 8 days abiotically and 100%removal was accomplished in 20 days when the reactor was seeded.Both abiotic and seeded reactors removed more than 92%PO_(4)^(3−)under high DO conditions in 12 days.Abiotic and biochemical removal of NO_(3)^(-)−N and abiotic removal of PO_(4)^(3−)were higher under independent NO_(3)^(-)−N/PO_(4)^(3−)loading,while 99%PO_(4)^(3−)was removed biochemically under combined NO_(3)^(-)−N and PO_(4)^(3−)loading.This study furthers the understandings of nitrate and phosphate removal in Zero Valent Iron(ZVI)assisted mixed microbial systems to encourage the application of SIF-supported bio-chemical processes in the simultaneous removals of these pollutants.展开更多
基金We are grateful for the project grants supported by the Major Science and Technology Programs for Water Pollution Control and Management of China(Nos.2012ZX07205-001 and 2017ZX7103-007).
文摘This study focuses on identifying the factors under which mixed microbial seeds assist bio-chemical denitrification when Scrap Iron Filings(SIF)are used as electron donors and adsorbents in low C/N ratio waters.Batch studies were conducted in abiotic and biotic reactors containing fresh and aged SIF under different dissolved oxygen concentrations with NO_(3)^(-)−N and/or PO_(4)^(3−)influent(s)and their nitrate/phosphate removal and by-product formations were studied.Batch reactors were seeded with a homogenized mixed microbial inoculum procured from natural sludges which were enriched over 6 months under denitrifying conditions in the presence of SIF.Results indicated that when influent containing 40 mg/L of NO_(3)^(-)−N was treated with 5 g SIF,79.9%nitrate reduction was observed in 8 days abiotically and 100%removal was accomplished in 20 days when the reactor was seeded.Both abiotic and seeded reactors removed more than 92%PO_(4)^(3−)under high DO conditions in 12 days.Abiotic and biochemical removal of NO_(3)^(-)−N and abiotic removal of PO_(4)^(3−)were higher under independent NO_(3)^(-)−N/PO_(4)^(3−)loading,while 99%PO_(4)^(3−)was removed biochemically under combined NO_(3)^(-)−N and PO_(4)^(3−)loading.This study furthers the understandings of nitrate and phosphate removal in Zero Valent Iron(ZVI)assisted mixed microbial systems to encourage the application of SIF-supported bio-chemical processes in the simultaneous removals of these pollutants.