Flavonoids constitute a diverse group of secondary metabolites which are present in both fruits and wines. The contents of some of the most prominent compounds such as catechin and epicatechin are little known in wine...Flavonoids constitute a diverse group of secondary metabolites which are present in both fruits and wines. The contents of some of the most prominent compounds such as catechin and epicatechin are little known in wines prepared from tropical fruits. In this context, this study was aimed to determine catechin and epicatechin contents in wines processed from 7 tropical fruits (cajá-umbu, cashew apple, mangaba, pineapple, siriguela, sugar apple and umbu), by HPLC-DAD system. Moreover the total phenolic compounds content was also determined in these wines and compared to those of the commercial wines obtained from grapes and cashew apple. The wines produced in this work contained higher total phenolic compounds contents when compared to that of the grape wines. The higher values of total phenolic compounds were found in wines elaborated from cajá-umbu (123.4 mg·mL-1 GAE) and from cashew (87.5 mg·mL-1 GAE). However, higher contents of catechin and epicatechin were found in wines obtained from mangaba (14.01 ± 0.37 mg·L-1, 22.66 ± 1.03 mg·L-1), siriguela (9.97 ± 0.28, 4.38 ± 0.45) and cashew apple (7.46 ± 0.18, 1.30 ± 0.17) fruits. The present work indicates that the use of exotic tropical fruits is feasible in developing wines which could serve as functional foods as these contain appreciable quantities of catechin and epicatechin.展开更多
A rapid chromatographic method for the determination of six phenolic acids (chlorogenic, ferulic, gallic, p-coumaric, protocatechuic and vanillic acids) by ultra performance liquid chromatography (UPLC), was developed...A rapid chromatographic method for the determination of six phenolic acids (chlorogenic, ferulic, gallic, p-coumaric, protocatechuic and vanillic acids) by ultra performance liquid chromatography (UPLC), was developed and applied for Brazilian tropical fruits mangaba (Hancornia speciosa Gomes) and umbu (Spondias tuberosa Arruda Camara). A multivariate statistical experimental design was employed to optimize analytical conditions (solvent A, solvent B concentrations and flow rates). Samples were cleaned-up by solid-phase extraction (SPE) with different solvents (methanol and acetone) employing SPE cartridges (amine and octadecyl-silane). The method using dihydrogen potassium phosphate 5 mmoL as solvent A and 8% acetonitrile as solvent B presented limits of detection varying from 14 to 94 ng.mL, limits of quantification from 39 to 277 ng.mL-1 with 2 μL of injection volume while total run time for all six compounds was only 9.6 minutes. Higher recovery was obtained by extraction with methanol-acetone of 69.51% to 72.59% for protocatechuic acid and 69.58% to 126.31% for the chlorogenic acid. The concentrations of chlorogenic, p-coumaric and ferulic acids in mangaba extracts were 113.4, 32.1 and 1.5 μg.g-1, respectively while concentrations of chlorogenic, protocatechuic, gallic, vanillic, ferulic and p-coumaric acids present in umbu fruit were 118.9, 141.3, 3.5, 2.5, 2.2 and 1.8 μg.g-1, respectively.展开更多
基金support received from CNPq/INCT-FT and CAPES,Brazil in developing this research project.
文摘Flavonoids constitute a diverse group of secondary metabolites which are present in both fruits and wines. The contents of some of the most prominent compounds such as catechin and epicatechin are little known in wines prepared from tropical fruits. In this context, this study was aimed to determine catechin and epicatechin contents in wines processed from 7 tropical fruits (cajá-umbu, cashew apple, mangaba, pineapple, siriguela, sugar apple and umbu), by HPLC-DAD system. Moreover the total phenolic compounds content was also determined in these wines and compared to those of the commercial wines obtained from grapes and cashew apple. The wines produced in this work contained higher total phenolic compounds contents when compared to that of the grape wines. The higher values of total phenolic compounds were found in wines elaborated from cajá-umbu (123.4 mg·mL-1 GAE) and from cashew (87.5 mg·mL-1 GAE). However, higher contents of catechin and epicatechin were found in wines obtained from mangaba (14.01 ± 0.37 mg·L-1, 22.66 ± 1.03 mg·L-1), siriguela (9.97 ± 0.28, 4.38 ± 0.45) and cashew apple (7.46 ± 0.18, 1.30 ± 0.17) fruits. The present work indicates that the use of exotic tropical fruits is feasible in developing wines which could serve as functional foods as these contain appreciable quantities of catechin and epicatechin.
基金All authors thank the financial support provided from the project,National Institute of Science and Technology(INCT)for Tropical Fruits from CNPq,Brazil offered for promoting research work undertaken in this studyThe co-authors(Edelvio and Rita)thank CAPES(Ministry of Education,Brazil)for providing fellowship to them.
文摘A rapid chromatographic method for the determination of six phenolic acids (chlorogenic, ferulic, gallic, p-coumaric, protocatechuic and vanillic acids) by ultra performance liquid chromatography (UPLC), was developed and applied for Brazilian tropical fruits mangaba (Hancornia speciosa Gomes) and umbu (Spondias tuberosa Arruda Camara). A multivariate statistical experimental design was employed to optimize analytical conditions (solvent A, solvent B concentrations and flow rates). Samples were cleaned-up by solid-phase extraction (SPE) with different solvents (methanol and acetone) employing SPE cartridges (amine and octadecyl-silane). The method using dihydrogen potassium phosphate 5 mmoL as solvent A and 8% acetonitrile as solvent B presented limits of detection varying from 14 to 94 ng.mL, limits of quantification from 39 to 277 ng.mL-1 with 2 μL of injection volume while total run time for all six compounds was only 9.6 minutes. Higher recovery was obtained by extraction with methanol-acetone of 69.51% to 72.59% for protocatechuic acid and 69.58% to 126.31% for the chlorogenic acid. The concentrations of chlorogenic, p-coumaric and ferulic acids in mangaba extracts were 113.4, 32.1 and 1.5 μg.g-1, respectively while concentrations of chlorogenic, protocatechuic, gallic, vanillic, ferulic and p-coumaric acids present in umbu fruit were 118.9, 141.3, 3.5, 2.5, 2.2 and 1.8 μg.g-1, respectively.